Borel extensions of Baire measures
Fundamenta Mathematicae, Tome 154 (1997) no. 3, pp. 275-293
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We show that in a countably metacompact space, if a Baire measure admits a Borel extension, then it admits a regular Borel extension. We also prove that under the special axiom ♣ there is a Dowker space which is quasi-Mařík but not Mařík, answering a question of H. Ohta and K. Tamano, and under P(c), that there is a Mařík Dowker space, answering a question of W. Adamski. We answer further questions of H. Ohta and K. Tamano by showing that the union of a Mařík space and a compact space is Mařík, that under "c is real-valued measurable", a Baire subset of a Mařík space need not be Mařík, and finally, that the preimage of a Mařík space under an open perfect map is Mařík.
Keywords:
Mařík, quasi-Mařík, countably metacompact, Dowker
Affiliations des auteurs :
J. M. Aldaz 1
@article{10_4064_fm_154_3_275_293,
author = {J. M. Aldaz},
title = {Borel extensions of {Baire} measures},
journal = {Fundamenta Mathematicae},
pages = {275--293},
year = {1997},
volume = {154},
number = {3},
doi = {10.4064/fm-154-3-275-293},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-154-3-275-293/}
}
J. M. Aldaz. Borel extensions of Baire measures. Fundamenta Mathematicae, Tome 154 (1997) no. 3, pp. 275-293. doi: 10.4064/fm-154-3-275-293
Cité par Sources :