Branched coverings and cubic Newton maps
Fundamenta Mathematicae, Tome 154 (1997) no. 3, pp. 207-260
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We construct branched coverings such as matings and captures to describe the dynamics of every critically finite cubic Newton map. This gives a combinatorial model of the set of cubic Newton maps as the gluing of a subset of cubic polynomials with a part of the filled Julia set of a specific polynomial (Figure 1).
@article{10_4064_fm_154_3_207_260,
author = {Lei Tan},
title = {Branched coverings and cubic {Newton} maps},
journal = {Fundamenta Mathematicae},
pages = {207--260},
publisher = {mathdoc},
volume = {154},
number = {3},
year = {1997},
doi = {10.4064/fm-154-3-207-260},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-154-3-207-260/}
}
Lei Tan. Branched coverings and cubic Newton maps. Fundamenta Mathematicae, Tome 154 (1997) no. 3, pp. 207-260. doi: 10.4064/fm-154-3-207-260
Cité par Sources :