More set-theory around the weak Freese–Nation property
Fundamenta Mathematicae, Tome 154 (1997) no. 2, pp. 159-176.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We introduce a very weak version of the square principle which may hold even under failure of the generalized continuum hypothesis. Under this weak square principle, we give a new characterization (Theorem 10) of partial orderings with κ-Freese-Nation property (see below for the definition). The characterization is not a ZFC theorem: assuming Chang's Conjecture for $ℵ_ω$, we can find a counter-example to the characterization (Theorem 12). We then show that, in the model obtained by adding Cohen reals, a lot of ccc complete Boolean algebras of cardinality ≤ λ have the $ℵ_1$-Freese-Nation property provided that $μ^{ℵ_0} = μ$ holds for every regular uncountable μ λ and the very weak square principle holds for each cardinal $ℵ_0 μ λ$ of cofinality ω ((Theorem 15). Finally, we prove that there is no $ℵ_2$-Lusin gap if P(ω) has the $ℵ_1$-Freese-Nation property (Theorem 17)
DOI : 10.4064/fm-154-2-159-176

Sakaé Fuchino 1 ; Lajos Soukup 1

1
@article{10_4064_fm_154_2_159_176,
     author = {Saka\'e Fuchino and Lajos Soukup},
     title = {More set-theory around the weak {Freese{\textendash}Nation} property},
     journal = {Fundamenta Mathematicae},
     pages = {159--176},
     publisher = {mathdoc},
     volume = {154},
     number = {2},
     year = {1997},
     doi = {10.4064/fm-154-2-159-176},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-154-2-159-176/}
}
TY  - JOUR
AU  - Sakaé Fuchino
AU  - Lajos Soukup
TI  - More set-theory around the weak Freese–Nation property
JO  - Fundamenta Mathematicae
PY  - 1997
SP  - 159
EP  - 176
VL  - 154
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-154-2-159-176/
DO  - 10.4064/fm-154-2-159-176
LA  - en
ID  - 10_4064_fm_154_2_159_176
ER  - 
%0 Journal Article
%A Sakaé Fuchino
%A Lajos Soukup
%T More set-theory around the weak Freese–Nation property
%J Fundamenta Mathematicae
%D 1997
%P 159-176
%V 154
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-154-2-159-176/
%R 10.4064/fm-154-2-159-176
%G en
%F 10_4064_fm_154_2_159_176
Sakaé Fuchino; Lajos Soukup. More set-theory around the weak Freese–Nation property. Fundamenta Mathematicae, Tome 154 (1997) no. 2, pp. 159-176. doi : 10.4064/fm-154-2-159-176. http://geodesic.mathdoc.fr/articles/10.4064/fm-154-2-159-176/

Cité par Sources :