A strong shape theory with S-duality
Fundamenta Mathematicae, Tome 154 (1997) no. 1, pp. 37-56
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
If in the classical S-category $\mathfrak P, 1)$ continuous mappings are replaced by compact-open strong shape (= {coss}) morphisms (cf. §1 or [1], §2), and 2) $\wedge$-products are properly reinterpreted, then an S-duality theorem for arbitrary subsets $X ⊂ S^n$ (rather than for compact polyhedra) holds (Theorem 2.1).
Keywords:
S-duality, Alexander duality, compact-open strong shape, virtual spaces
Affiliations des auteurs :
Friedrich W. Bauer 1
@article{10_4064_fm_154_1_37_56,
author = {Friedrich W. Bauer},
title = {A strong shape theory with {S-duality}},
journal = {Fundamenta Mathematicae},
pages = {37--56},
publisher = {mathdoc},
volume = {154},
number = {1},
year = {1997},
doi = {10.4064/fm-154-1-37-56},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-154-1-37-56/}
}
Friedrich W. Bauer. A strong shape theory with S-duality. Fundamenta Mathematicae, Tome 154 (1997) no. 1, pp. 37-56. doi: 10.4064/fm-154-1-37-56
Cité par Sources :