A strong shape theory with S-duality
Fundamenta Mathematicae, Tome 154 (1997) no. 1, pp. 37-56.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

If in the classical S-category $\mathfrak P, 1)$ continuous mappings are replaced by compact-open strong shape (= {coss}) morphisms (cf. §1 or [1], §2), and 2) $\wedge$-products are properly reinterpreted, then an S-duality theorem for arbitrary subsets $X ⊂ S^n$ (rather than for compact polyhedra) holds (Theorem 2.1).
DOI : 10.4064/fm-154-1-37-56
Keywords: S-duality, Alexander duality, compact-open strong shape, virtual spaces

Friedrich W. Bauer 1

1
@article{10_4064_fm_154_1_37_56,
     author = {Friedrich W.  Bauer},
     title = {A strong shape theory with {S-duality}},
     journal = {Fundamenta Mathematicae},
     pages = {37--56},
     publisher = {mathdoc},
     volume = {154},
     number = {1},
     year = {1997},
     doi = {10.4064/fm-154-1-37-56},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-154-1-37-56/}
}
TY  - JOUR
AU  - Friedrich W.  Bauer
TI  - A strong shape theory with S-duality
JO  - Fundamenta Mathematicae
PY  - 1997
SP  - 37
EP  - 56
VL  - 154
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-154-1-37-56/
DO  - 10.4064/fm-154-1-37-56
LA  - en
ID  - 10_4064_fm_154_1_37_56
ER  - 
%0 Journal Article
%A Friedrich W.  Bauer
%T A strong shape theory with S-duality
%J Fundamenta Mathematicae
%D 1997
%P 37-56
%V 154
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-154-1-37-56/
%R 10.4064/fm-154-1-37-56
%G en
%F 10_4064_fm_154_1_37_56
Friedrich W.  Bauer. A strong shape theory with S-duality. Fundamenta Mathematicae, Tome 154 (1997) no. 1, pp. 37-56. doi : 10.4064/fm-154-1-37-56. http://geodesic.mathdoc.fr/articles/10.4064/fm-154-1-37-56/

Cité par Sources :