Non-Glimm–Effros equivalence relations at second projective level
Fundamenta Mathematicae, Tome 154 (1997) no. 1, pp. 1-35
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A model is presented in which the $Σ^1_2$ equivalence relation xCy iff L[x]=L[y] of equiconstructibility of reals does not admit a reasonable form of the Glimm-Effros theorem. The model is a kind of iterated Sacks generic extension of the constructible model, but with an "ill"founded "length" of the iteration. In another model of this type, we get an example of a ${Π}^1_2$ non-Glimm-Effros equivalence relation on reals. As a more elementary application of the technique of "ill"founded Sacks iterations, we obtain a model in which every nonconstructible real codes a collapse of a given cardinal $κ ≥ ℵ_2^{old}$ to $ℵ_1^{old}$.
@article{10_4064_fm_154_1_1_35,
author = {Vladimir Kanovei},
title = {Non-Glimm{\textendash}Effros equivalence relations at second projective level},
journal = {Fundamenta Mathematicae},
pages = {1--35},
publisher = {mathdoc},
volume = {154},
number = {1},
year = {1997},
doi = {10.4064/fm-154-1-1-35},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-154-1-1-35/}
}
TY - JOUR AU - Vladimir Kanovei TI - Non-Glimm–Effros equivalence relations at second projective level JO - Fundamenta Mathematicae PY - 1997 SP - 1 EP - 35 VL - 154 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-154-1-1-35/ DO - 10.4064/fm-154-1-1-35 LA - en ID - 10_4064_fm_154_1_1_35 ER -
Vladimir Kanovei. Non-Glimm–Effros equivalence relations at second projective level. Fundamenta Mathematicae, Tome 154 (1997) no. 1, pp. 1-35. doi: 10.4064/fm-154-1-1-35
Cité par Sources :