Non-Glimm–Effros equivalence relations at second projective level
Fundamenta Mathematicae, Tome 154 (1997) no. 1, pp. 1-35.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A model is presented in which the $Σ^1_2$ equivalence relation xCy iff L[x]=L[y] of equiconstructibility of reals does not admit a reasonable form of the Glimm-Effros theorem. The model is a kind of iterated Sacks generic extension of the constructible model, but with an "ill"founded "length" of the iteration. In another model of this type, we get an example of a ${Π}^1_2$ non-Glimm-Effros equivalence relation on reals. As a more elementary application of the technique of "ill"founded Sacks iterations, we obtain a model in which every nonconstructible real codes a collapse of a given cardinal $κ ≥ ℵ_2^{old}$ to $ℵ_1^{old}$.
DOI : 10.4064/fm-154-1-1-35

Vladimir Kanovei 1

1
@article{10_4064_fm_154_1_1_35,
     author = {Vladimir Kanovei},
     title = {Non-Glimm{\textendash}Effros equivalence relations at second projective level},
     journal = {Fundamenta Mathematicae},
     pages = {1--35},
     publisher = {mathdoc},
     volume = {154},
     number = {1},
     year = {1997},
     doi = {10.4064/fm-154-1-1-35},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-154-1-1-35/}
}
TY  - JOUR
AU  - Vladimir Kanovei
TI  - Non-Glimm–Effros equivalence relations at second projective level
JO  - Fundamenta Mathematicae
PY  - 1997
SP  - 1
EP  - 35
VL  - 154
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-154-1-1-35/
DO  - 10.4064/fm-154-1-1-35
LA  - en
ID  - 10_4064_fm_154_1_1_35
ER  - 
%0 Journal Article
%A Vladimir Kanovei
%T Non-Glimm–Effros equivalence relations at second projective level
%J Fundamenta Mathematicae
%D 1997
%P 1-35
%V 154
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-154-1-1-35/
%R 10.4064/fm-154-1-1-35
%G en
%F 10_4064_fm_154_1_1_35
Vladimir Kanovei. Non-Glimm–Effros equivalence relations at second projective level. Fundamenta Mathematicae, Tome 154 (1997) no. 1, pp. 1-35. doi : 10.4064/fm-154-1-1-35. http://geodesic.mathdoc.fr/articles/10.4064/fm-154-1-1-35/

Cité par Sources :