Ordinary differential equations and descriptive set theory: uniqueness and globality of solutions of Cauchy problems in one dimension
Fundamenta Mathematicae, Tome 153 (1997) no. 2, pp. 157-190
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We study some natural sets arising in the theory of ordinary differential equations in one variable from the point of view of descriptive set theory and in particular classify them within the Borel hierarchy. We prove that the set of Cauchy problems for ordinary differential equations which have a unique solution is $∏^0_2$-complete and that the set of Cauchy problems which locally have a unique solution is $∑^0_3$-complete. We prove that the set of Cauchy problems which have a global solution is $∑_0^4$-complete and that the set of ordinary differential equations which have a global solution for every initial condition is $∏^0_3$-complete. We prove that the set of Cauchy problems for which both uniqueness and globality hold is $∏^0_2$-complete.
Affiliations des auteurs :
Alessandro Andretta 1 ; Alberto Marcone 1
@article{10_4064_fm_153_2_157_190,
author = {Alessandro Andretta and Alberto Marcone},
title = {Ordinary differential equations and descriptive set theory: uniqueness and globality of solutions of {Cauchy} problems in one dimension},
journal = {Fundamenta Mathematicae},
pages = {157--190},
publisher = {mathdoc},
volume = {153},
number = {2},
year = {1997},
doi = {10.4064/fm-153-2-157-190},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-153-2-157-190/}
}
TY - JOUR AU - Alessandro Andretta AU - Alberto Marcone TI - Ordinary differential equations and descriptive set theory: uniqueness and globality of solutions of Cauchy problems in one dimension JO - Fundamenta Mathematicae PY - 1997 SP - 157 EP - 190 VL - 153 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-153-2-157-190/ DO - 10.4064/fm-153-2-157-190 LA - en ID - 10_4064_fm_153_2_157_190 ER -
%0 Journal Article %A Alessandro Andretta %A Alberto Marcone %T Ordinary differential equations and descriptive set theory: uniqueness and globality of solutions of Cauchy problems in one dimension %J Fundamenta Mathematicae %D 1997 %P 157-190 %V 153 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm-153-2-157-190/ %R 10.4064/fm-153-2-157-190 %G en %F 10_4064_fm_153_2_157_190
Alessandro Andretta; Alberto Marcone. Ordinary differential equations and descriptive set theory: uniqueness and globality of solutions of Cauchy problems in one dimension. Fundamenta Mathematicae, Tome 153 (1997) no. 2, pp. 157-190. doi: 10.4064/fm-153-2-157-190
Cité par Sources :