Ordinary differential equations and descriptive set theory: uniqueness and globality of solutions of Cauchy problems in one dimension
Fundamenta Mathematicae, Tome 153 (1997) no. 2, pp. 157-190.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study some natural sets arising in the theory of ordinary differential equations in one variable from the point of view of descriptive set theory and in particular classify them within the Borel hierarchy. We prove that the set of Cauchy problems for ordinary differential equations which have a unique solution is $∏^0_2$-complete and that the set of Cauchy problems which locally have a unique solution is $∑^0_3$-complete. We prove that the set of Cauchy problems which have a global solution is $∑_0^4$-complete and that the set of ordinary differential equations which have a global solution for every initial condition is $∏^0_3$-complete. We prove that the set of Cauchy problems for which both uniqueness and globality hold is $∏^0_2$-complete.
DOI : 10.4064/fm-153-2-157-190

Alessandro Andretta 1 ; Alberto Marcone 1

1
@article{10_4064_fm_153_2_157_190,
     author = {Alessandro  Andretta and Alberto  Marcone},
     title = {Ordinary differential equations and descriptive set theory: uniqueness and globality of solutions of {Cauchy} problems in one dimension},
     journal = {Fundamenta Mathematicae},
     pages = {157--190},
     publisher = {mathdoc},
     volume = {153},
     number = {2},
     year = {1997},
     doi = {10.4064/fm-153-2-157-190},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-153-2-157-190/}
}
TY  - JOUR
AU  - Alessandro  Andretta
AU  - Alberto  Marcone
TI  - Ordinary differential equations and descriptive set theory: uniqueness and globality of solutions of Cauchy problems in one dimension
JO  - Fundamenta Mathematicae
PY  - 1997
SP  - 157
EP  - 190
VL  - 153
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-153-2-157-190/
DO  - 10.4064/fm-153-2-157-190
LA  - en
ID  - 10_4064_fm_153_2_157_190
ER  - 
%0 Journal Article
%A Alessandro  Andretta
%A Alberto  Marcone
%T Ordinary differential equations and descriptive set theory: uniqueness and globality of solutions of Cauchy problems in one dimension
%J Fundamenta Mathematicae
%D 1997
%P 157-190
%V 153
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-153-2-157-190/
%R 10.4064/fm-153-2-157-190
%G en
%F 10_4064_fm_153_2_157_190
Alessandro  Andretta; Alberto  Marcone. Ordinary differential equations and descriptive set theory: uniqueness and globality of solutions of Cauchy problems in one dimension. Fundamenta Mathematicae, Tome 153 (1997) no. 2, pp. 157-190. doi : 10.4064/fm-153-2-157-190. http://geodesic.mathdoc.fr/articles/10.4064/fm-153-2-157-190/

Cité par Sources :