Operators on $C(ω^α)$ which do not preserve $C(ω^α)$
Fundamenta Mathematicae, Tome 153 (1997) no. 1, pp. 81-98.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

It is shown that if α,ζ are ordinals such that 1 ≤ ζ α ζω, then there is an operator from $C(ω^{ω^α})$ onto itself such that if Y is a subspace of $C(ω^{ω^α})$ which is isomorphic to $C(ω^{ω^α})$, then the operator is not an isomorphism on Y. This contrasts with a result of J. Bourgain that implies that there are uncountably many ordinals α for which for any operator from $C(ω^{ω^α})$ onto itself there is a subspace of $C(ω^{ω^α})$ which is isomorphic to $C(ω^{ω^α})$ on which the operator is an isomorphism.
DOI : 10.4064/fm-153-1-81-98
Keywords: ordinal index, Szlenk index, Banach space of continuous functions

Dale E. Alspach 1

1
@article{10_4064_fm_153_1_81_98,
     author = {Dale E.  Alspach},
     title = {Operators on $C(\ensuremath{\omega}^\ensuremath{\alpha})$ which do not preserve $C(\ensuremath{\omega}^\ensuremath{\alpha})$},
     journal = {Fundamenta Mathematicae},
     pages = {81--98},
     publisher = {mathdoc},
     volume = {153},
     number = {1},
     year = {1997},
     doi = {10.4064/fm-153-1-81-98},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-153-1-81-98/}
}
TY  - JOUR
AU  - Dale E.  Alspach
TI  - Operators on $C(ω^α)$ which do not preserve $C(ω^α)$
JO  - Fundamenta Mathematicae
PY  - 1997
SP  - 81
EP  - 98
VL  - 153
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-153-1-81-98/
DO  - 10.4064/fm-153-1-81-98
LA  - en
ID  - 10_4064_fm_153_1_81_98
ER  - 
%0 Journal Article
%A Dale E.  Alspach
%T Operators on $C(ω^α)$ which do not preserve $C(ω^α)$
%J Fundamenta Mathematicae
%D 1997
%P 81-98
%V 153
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-153-1-81-98/
%R 10.4064/fm-153-1-81-98
%G en
%F 10_4064_fm_153_1_81_98
Dale E.  Alspach. Operators on $C(ω^α)$ which do not preserve $C(ω^α)$. Fundamenta Mathematicae, Tome 153 (1997) no. 1, pp. 81-98. doi : 10.4064/fm-153-1-81-98. http://geodesic.mathdoc.fr/articles/10.4064/fm-153-1-81-98/

Cité par Sources :