Nonseparable Radon measures and small compact spaces
Fundamenta Mathematicae, Tome 153 (1997) no. 1, pp. 25-40.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We investigate the problem if every compact space $K$ carrying a Radon measure of Maharam type $\kappa$ can be continuously mapped onto the Tikhonov cube $[0, 1]^\kappa$ ($\kappa$ being an uncountable cardinal). We show that for $\kappa ≥ cf(\kappa) ≥ \kappa$ this holds if and only if $\kappa$ is a precaliber of measure algebras. Assuming that there is a family of $ω_1$ null sets in $2^{ω1}$ such that every perfect set meets one of them, we construct a compact space showing that the answer to the above problem is "no" for $\kappa = ω$. We also give alternative proofs of two related results due to Kunen and van Mill [18].
DOI : 10.4064/fm-153-1-25-40

Grzegorz Plebanek 1

1
@article{10_4064_fm_153_1_25_40,
     author = {Grzegorz  Plebanek},
     title = {Nonseparable {Radon} measures and small compact spaces},
     journal = {Fundamenta Mathematicae},
     pages = {25--40},
     publisher = {mathdoc},
     volume = {153},
     number = {1},
     year = {1997},
     doi = {10.4064/fm-153-1-25-40},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-153-1-25-40/}
}
TY  - JOUR
AU  - Grzegorz  Plebanek
TI  - Nonseparable Radon measures and small compact spaces
JO  - Fundamenta Mathematicae
PY  - 1997
SP  - 25
EP  - 40
VL  - 153
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-153-1-25-40/
DO  - 10.4064/fm-153-1-25-40
LA  - en
ID  - 10_4064_fm_153_1_25_40
ER  - 
%0 Journal Article
%A Grzegorz  Plebanek
%T Nonseparable Radon measures and small compact spaces
%J Fundamenta Mathematicae
%D 1997
%P 25-40
%V 153
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-153-1-25-40/
%R 10.4064/fm-153-1-25-40
%G en
%F 10_4064_fm_153_1_25_40
Grzegorz  Plebanek. Nonseparable Radon measures and small compact spaces. Fundamenta Mathematicae, Tome 153 (1997) no. 1, pp. 25-40. doi : 10.4064/fm-153-1-25-40. http://geodesic.mathdoc.fr/articles/10.4064/fm-153-1-25-40/

Cité par Sources :