Lefschetz coincidence formula on non-orientable manifolds
Fundamenta Mathematicae, Tome 153 (1997) no. 1, pp. 1-23
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We generalize the Lefschetz coincidence theorem to non-oriented manifolds. We use (co-) homology groups with local coefficients. This generalization requires the assumption that one of the considered maps is orientation true.
Affiliations des auteurs :
Daciberg Lima Gonçalves 1 ; Jerzy Jezierski 1
@article{10_4064_fm_153_1_1_23,
author = {Daciberg Lima Gon\c{c}alves and Jerzy Jezierski},
title = {Lefschetz coincidence formula on non-orientable manifolds},
journal = {Fundamenta Mathematicae},
pages = {1--23},
publisher = {mathdoc},
volume = {153},
number = {1},
year = {1997},
doi = {10.4064/fm-153-1-1-23},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-153-1-1-23/}
}
TY - JOUR AU - Daciberg Lima Gonçalves AU - Jerzy Jezierski TI - Lefschetz coincidence formula on non-orientable manifolds JO - Fundamenta Mathematicae PY - 1997 SP - 1 EP - 23 VL - 153 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-153-1-1-23/ DO - 10.4064/fm-153-1-1-23 LA - fr ID - 10_4064_fm_153_1_1_23 ER -
%0 Journal Article %A Daciberg Lima Gonçalves %A Jerzy Jezierski %T Lefschetz coincidence formula on non-orientable manifolds %J Fundamenta Mathematicae %D 1997 %P 1-23 %V 153 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm-153-1-1-23/ %R 10.4064/fm-153-1-1-23 %G fr %F 10_4064_fm_153_1_1_23
Daciberg Lima Gonçalves; Jerzy Jezierski. Lefschetz coincidence formula on non-orientable manifolds. Fundamenta Mathematicae, Tome 153 (1997) no. 1, pp. 1-23. doi: 10.4064/fm-153-1-1-23
Cité par Sources :