Lefschetz coincidence formula on non-orientable manifolds
Fundamenta Mathematicae, Tome 153 (1997) no. 1, pp. 1-23.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We generalize the Lefschetz coincidence theorem to non-oriented manifolds. We use (co-) homology groups with local coefficients. This generalization requires the assumption that one of the considered maps is orientation true.
DOI : 10.4064/fm-153-1-1-23

Daciberg Lima Gonçalves 1 ; Jerzy Jezierski 1

1
@article{10_4064_fm_153_1_1_23,
     author = {Daciberg Lima Gon\c{c}alves and Jerzy  Jezierski},
     title = {Lefschetz coincidence formula on non-orientable manifolds},
     journal = {Fundamenta Mathematicae},
     pages = {1--23},
     publisher = {mathdoc},
     volume = {153},
     number = {1},
     year = {1997},
     doi = {10.4064/fm-153-1-1-23},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-153-1-1-23/}
}
TY  - JOUR
AU  - Daciberg Lima Gonçalves
AU  - Jerzy  Jezierski
TI  - Lefschetz coincidence formula on non-orientable manifolds
JO  - Fundamenta Mathematicae
PY  - 1997
SP  - 1
EP  - 23
VL  - 153
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-153-1-1-23/
DO  - 10.4064/fm-153-1-1-23
LA  - fr
ID  - 10_4064_fm_153_1_1_23
ER  - 
%0 Journal Article
%A Daciberg Lima Gonçalves
%A Jerzy  Jezierski
%T Lefschetz coincidence formula on non-orientable manifolds
%J Fundamenta Mathematicae
%D 1997
%P 1-23
%V 153
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-153-1-1-23/
%R 10.4064/fm-153-1-1-23
%G fr
%F 10_4064_fm_153_1_1_23
Daciberg Lima Gonçalves; Jerzy  Jezierski. Lefschetz coincidence formula on non-orientable manifolds. Fundamenta Mathematicae, Tome 153 (1997) no. 1, pp. 1-23. doi : 10.4064/fm-153-1-1-23. http://geodesic.mathdoc.fr/articles/10.4064/fm-153-1-1-23/

Cité par Sources :