Shift spaces and attractors in noninvertible horseshoes
Fundamenta Mathematicae, Tome 152 (1997) no. 3, pp. 267-289
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
As is well known, a horseshoe map, i.e. a special injective reimbedding of the unit square $I^2$ in $ℝ^2$ (or more generally, of the cube $I^m$ in $ℝ^m$) as considered first by S. Smale [5], defines a shift dynamics on the maximal invariant subset of $I^2$ (or $I^m$). It is shown that this remains true almost surely for noninjective maps provided the contraction rate of the mapping in the stable direction is sufficiently strong, and bounds for this rate are given.
Keywords:
horseshoes, noninvertible maps, shift spaces, attractors
Affiliations des auteurs :
H. G. Bothe 1
@article{10_4064_fm_152_3_267_289,
author = {H. G. Bothe},
title = {Shift spaces and attractors in noninvertible horseshoes},
journal = {Fundamenta Mathematicae},
pages = {267--289},
publisher = {mathdoc},
volume = {152},
number = {3},
year = {1997},
doi = {10.4064/fm-152-3-267-289},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-152-3-267-289/}
}
TY - JOUR AU - H. G. Bothe TI - Shift spaces and attractors in noninvertible horseshoes JO - Fundamenta Mathematicae PY - 1997 SP - 267 EP - 289 VL - 152 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-152-3-267-289/ DO - 10.4064/fm-152-3-267-289 LA - en ID - 10_4064_fm_152_3_267_289 ER -
H. G. Bothe. Shift spaces and attractors in noninvertible horseshoes. Fundamenta Mathematicae, Tome 152 (1997) no. 3, pp. 267-289. doi: 10.4064/fm-152-3-267-289
Cité par Sources :