Combinatorics of open covers (III): games, $\mathsf C_p (X)$
Fundamenta Mathematicae, Tome 152 (1997) no. 3, pp. 231-254.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Some of the covering properties of spaces as defined in Parts I and II are here characterized by games. These results, applied to function spaces $C_p(X)$ of countable tightness, give new characterizations of countable fan tightness and countable strong fan tightness. In particular, each of these properties is characterized by a Ramseyan theorem.
DOI : 10.4064/fm-152-3-231-254
Keywords: Rothberger property, Menger property, ω-cover, $S_1(Ω, Ω)$, $S_{fin}(Ω, Ω)$, $C_p(X)$, countable fan tightness, countable strong fan tightness, infinite games

Marion Scheepers 1

1
@article{10_4064_fm_152_3_231_254,
     author = {Marion Scheepers},
     title = {Combinatorics of open covers {(III):} games, $\mathsf C_p (X)$},
     journal = {Fundamenta Mathematicae},
     pages = {231--254},
     publisher = {mathdoc},
     volume = {152},
     number = {3},
     year = {1997},
     doi = {10.4064/fm-152-3-231-254},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-152-3-231-254/}
}
TY  - JOUR
AU  - Marion Scheepers
TI  - Combinatorics of open covers (III): games, $\mathsf C_p (X)$
JO  - Fundamenta Mathematicae
PY  - 1997
SP  - 231
EP  - 254
VL  - 152
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-152-3-231-254/
DO  - 10.4064/fm-152-3-231-254
LA  - en
ID  - 10_4064_fm_152_3_231_254
ER  - 
%0 Journal Article
%A Marion Scheepers
%T Combinatorics of open covers (III): games, $\mathsf C_p (X)$
%J Fundamenta Mathematicae
%D 1997
%P 231-254
%V 152
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-152-3-231-254/
%R 10.4064/fm-152-3-231-254
%G en
%F 10_4064_fm_152_3_231_254
Marion Scheepers. Combinatorics of open covers (III): games, $\mathsf C_p (X)$. Fundamenta Mathematicae, Tome 152 (1997) no. 3, pp. 231-254. doi : 10.4064/fm-152-3-231-254. http://geodesic.mathdoc.fr/articles/10.4064/fm-152-3-231-254/

Cité par Sources :