Combinatorics of open covers (III): games, $\mathsf C_p (X)$
Fundamenta Mathematicae, Tome 152 (1997) no. 3, pp. 231-254
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Some of the covering properties of spaces as defined in Parts I and II are here characterized by games. These results, applied to function spaces $C_p(X)$ of countable tightness, give new characterizations of countable fan tightness and countable strong fan tightness. In particular, each of these properties is characterized by a Ramseyan theorem.
Keywords:
Rothberger property, Menger property, ω-cover, $S_1(Ω, Ω)$, $S_{fin}(Ω, Ω)$, $C_p(X)$, countable fan tightness, countable strong fan tightness, infinite games
Affiliations des auteurs :
Marion Scheepers 1
@article{10_4064_fm_152_3_231_254,
author = {Marion Scheepers},
title = {Combinatorics of open covers {(III):} games, $\mathsf C_p (X)$},
journal = {Fundamenta Mathematicae},
pages = {231--254},
publisher = {mathdoc},
volume = {152},
number = {3},
year = {1997},
doi = {10.4064/fm-152-3-231-254},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-152-3-231-254/}
}
TY - JOUR AU - Marion Scheepers TI - Combinatorics of open covers (III): games, $\mathsf C_p (X)$ JO - Fundamenta Mathematicae PY - 1997 SP - 231 EP - 254 VL - 152 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-152-3-231-254/ DO - 10.4064/fm-152-3-231-254 LA - en ID - 10_4064_fm_152_3_231_254 ER -
Marion Scheepers. Combinatorics of open covers (III): games, $\mathsf C_p (X)$. Fundamenta Mathematicae, Tome 152 (1997) no. 3, pp. 231-254. doi: 10.4064/fm-152-3-231-254
Cité par Sources :