A new large cardinal and Laver sequences for extendibles
Fundamenta Mathematicae, Tome 152 (1997) no. 2, pp. 183-188.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We define a new large cardinal axiom that fits between $A_3$ and $A_4$ in the hierarchy of axioms described in [SRK]. We use this new axiom to obtain a Laver sequence for extendible cardinals, improving the known large cardinal upper bound for the existence of such sequences.
DOI : 10.4064/fm-152-2-183-188

Paul Corazza 1

1
@article{10_4064_fm_152_2_183_188,
     author = {Paul Corazza},
     title = {A new large cardinal and {Laver} sequences for extendibles},
     journal = {Fundamenta Mathematicae},
     pages = {183--188},
     publisher = {mathdoc},
     volume = {152},
     number = {2},
     year = {1997},
     doi = {10.4064/fm-152-2-183-188},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-152-2-183-188/}
}
TY  - JOUR
AU  - Paul Corazza
TI  - A new large cardinal and Laver sequences for extendibles
JO  - Fundamenta Mathematicae
PY  - 1997
SP  - 183
EP  - 188
VL  - 152
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-152-2-183-188/
DO  - 10.4064/fm-152-2-183-188
LA  - en
ID  - 10_4064_fm_152_2_183_188
ER  - 
%0 Journal Article
%A Paul Corazza
%T A new large cardinal and Laver sequences for extendibles
%J Fundamenta Mathematicae
%D 1997
%P 183-188
%V 152
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-152-2-183-188/
%R 10.4064/fm-152-2-183-188
%G en
%F 10_4064_fm_152_2_183_188
Paul Corazza. A new large cardinal and Laver sequences for extendibles. Fundamenta Mathematicae, Tome 152 (1997) no. 2, pp. 183-188. doi : 10.4064/fm-152-2-183-188. http://geodesic.mathdoc.fr/articles/10.4064/fm-152-2-183-188/

Cité par Sources :