A new large cardinal and Laver sequences for extendibles
Fundamenta Mathematicae, Tome 152 (1997) no. 2, pp. 183-188
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We define a new large cardinal axiom that fits between $A_3$ and $A_4$ in the hierarchy of axioms described in [SRK]. We use this new axiom to obtain a Laver sequence for extendible cardinals, improving the known large cardinal upper bound for the existence of such sequences.
@article{10_4064_fm_152_2_183_188,
author = {Paul Corazza},
title = {A new large cardinal and {Laver} sequences for extendibles},
journal = {Fundamenta Mathematicae},
pages = {183--188},
publisher = {mathdoc},
volume = {152},
number = {2},
year = {1997},
doi = {10.4064/fm-152-2-183-188},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-152-2-183-188/}
}
TY - JOUR AU - Paul Corazza TI - A new large cardinal and Laver sequences for extendibles JO - Fundamenta Mathematicae PY - 1997 SP - 183 EP - 188 VL - 152 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-152-2-183-188/ DO - 10.4064/fm-152-2-183-188 LA - en ID - 10_4064_fm_152_2_183_188 ER -
Paul Corazza. A new large cardinal and Laver sequences for extendibles. Fundamenta Mathematicae, Tome 152 (1997) no. 2, pp. 183-188. doi: 10.4064/fm-152-2-183-188
Cité par Sources :