Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Uri Abraham 1 ; Stevo Todorčević 1
@article{10_4064_fm_152_2_165_181, author = {Uri Abraham and Stevo Todor\v{c}evi\'c}, title = {Partition properties of $\ensuremath{\omega}_1$ compatible with {CH}}, journal = {Fundamenta Mathematicae}, pages = {165--181}, publisher = {mathdoc}, volume = {152}, number = {2}, year = {1997}, doi = {10.4064/fm-152-2-165-181}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-152-2-165-181/} }
TY - JOUR AU - Uri Abraham AU - Stevo Todorčević TI - Partition properties of $ω_1$ compatible with CH JO - Fundamenta Mathematicae PY - 1997 SP - 165 EP - 181 VL - 152 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-152-2-165-181/ DO - 10.4064/fm-152-2-165-181 LA - en ID - 10_4064_fm_152_2_165_181 ER -
%0 Journal Article %A Uri Abraham %A Stevo Todorčević %T Partition properties of $ω_1$ compatible with CH %J Fundamenta Mathematicae %D 1997 %P 165-181 %V 152 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm-152-2-165-181/ %R 10.4064/fm-152-2-165-181 %G en %F 10_4064_fm_152_2_165_181
Uri Abraham; Stevo Todorčević. Partition properties of $ω_1$ compatible with CH. Fundamenta Mathematicae, Tome 152 (1997) no. 2, pp. 165-181. doi : 10.4064/fm-152-2-165-181. http://geodesic.mathdoc.fr/articles/10.4064/fm-152-2-165-181/
Cité par Sources :