Partition properties of $ω_1$ compatible with CH
Fundamenta Mathematicae, Tome 152 (1997) no. 2, pp. 165-181
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
A combinatorial statement concerning ideals of countable subsets of ω is introduced and proved to be consistent with the Continuum Hypothesis. This statement implies the Suslin Hypothesis, that all (ω, ω*)-gaps are Hausdorff, and that every coherent sequence on ω either almost includes or is orthogonal to some uncountable subset of ω.
Affiliations des auteurs :
Uri Abraham 1 ; Stevo Todorčević 1
@article{10_4064_fm_152_2_165_181,
author = {Uri Abraham and Stevo Todor\v{c}evi\'c},
title = {Partition properties of $\ensuremath{\omega}_1$ compatible with {CH}},
journal = {Fundamenta Mathematicae},
pages = {165--181},
year = {1997},
volume = {152},
number = {2},
doi = {10.4064/fm-152-2-165-181},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-152-2-165-181/}
}
TY - JOUR AU - Uri Abraham AU - Stevo Todorčević TI - Partition properties of $ω_1$ compatible with CH JO - Fundamenta Mathematicae PY - 1997 SP - 165 EP - 181 VL - 152 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-152-2-165-181/ DO - 10.4064/fm-152-2-165-181 LA - en ID - 10_4064_fm_152_2_165_181 ER -
Uri Abraham; Stevo Todorčević. Partition properties of $ω_1$ compatible with CH. Fundamenta Mathematicae, Tome 152 (1997) no. 2, pp. 165-181. doi: 10.4064/fm-152-2-165-181
Cité par Sources :