Partition properties of $ω_1$ compatible with CH
Fundamenta Mathematicae, Tome 152 (1997) no. 2, pp. 165-181.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A combinatorial statement concerning ideals of countable subsets of ω is introduced and proved to be consistent with the Continuum Hypothesis. This statement implies the Suslin Hypothesis, that all (ω, ω*)-gaps are Hausdorff, and that every coherent sequence on ω either almost includes or is orthogonal to some uncountable subset of ω.
DOI : 10.4064/fm-152-2-165-181

Uri Abraham 1 ; Stevo Todorčević 1

1
@article{10_4064_fm_152_2_165_181,
     author = {Uri  Abraham and Stevo  Todor\v{c}evi\'c},
     title = {Partition properties of $\ensuremath{\omega}_1$ compatible with {CH}},
     journal = {Fundamenta Mathematicae},
     pages = {165--181},
     publisher = {mathdoc},
     volume = {152},
     number = {2},
     year = {1997},
     doi = {10.4064/fm-152-2-165-181},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-152-2-165-181/}
}
TY  - JOUR
AU  - Uri  Abraham
AU  - Stevo  Todorčević
TI  - Partition properties of $ω_1$ compatible with CH
JO  - Fundamenta Mathematicae
PY  - 1997
SP  - 165
EP  - 181
VL  - 152
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-152-2-165-181/
DO  - 10.4064/fm-152-2-165-181
LA  - en
ID  - 10_4064_fm_152_2_165_181
ER  - 
%0 Journal Article
%A Uri  Abraham
%A Stevo  Todorčević
%T Partition properties of $ω_1$ compatible with CH
%J Fundamenta Mathematicae
%D 1997
%P 165-181
%V 152
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-152-2-165-181/
%R 10.4064/fm-152-2-165-181
%G en
%F 10_4064_fm_152_2_165_181
Uri  Abraham; Stevo  Todorčević. Partition properties of $ω_1$ compatible with CH. Fundamenta Mathematicae, Tome 152 (1997) no. 2, pp. 165-181. doi : 10.4064/fm-152-2-165-181. http://geodesic.mathdoc.fr/articles/10.4064/fm-152-2-165-181/

Cité par Sources :