Structure spaces for rings of continuous functions with applications to realcompactifications
Fundamenta Mathematicae, Tome 152 (1997) no. 2, pp. 151-163
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let X be a completely regular space and let A(X) be a ring of continuous real-valued functions on X which is closed under local bounded inversion. We show that the structure space of A(X) is homeomorphic to a quotient of the Stone-Čech compactification of X. We use this result to show that any realcompactification of X is homeomorphic to a subspace of the structure space of some ring of continuous functions A(X).
Keywords:
ring of continuous functions, maximal ideal, ultrafilter, realcompactification
Affiliations des auteurs :
Lothar Redlin 1 ; Saleem Watson 1
@article{10_4064_fm_152_2_151_163,
author = {Lothar Redlin and Saleem Watson},
title = {Structure spaces for rings of continuous functions with applications to realcompactifications},
journal = {Fundamenta Mathematicae},
pages = {151--163},
publisher = {mathdoc},
volume = {152},
number = {2},
year = {1997},
doi = {10.4064/fm-152-2-151-163},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-152-2-151-163/}
}
TY - JOUR AU - Lothar Redlin AU - Saleem Watson TI - Structure spaces for rings of continuous functions with applications to realcompactifications JO - Fundamenta Mathematicae PY - 1997 SP - 151 EP - 163 VL - 152 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-152-2-151-163/ DO - 10.4064/fm-152-2-151-163 LA - en ID - 10_4064_fm_152_2_151_163 ER -
%0 Journal Article %A Lothar Redlin %A Saleem Watson %T Structure spaces for rings of continuous functions with applications to realcompactifications %J Fundamenta Mathematicae %D 1997 %P 151-163 %V 152 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm-152-2-151-163/ %R 10.4064/fm-152-2-151-163 %G en %F 10_4064_fm_152_2_151_163
Lothar Redlin; Saleem Watson. Structure spaces for rings of continuous functions with applications to realcompactifications. Fundamenta Mathematicae, Tome 152 (1997) no. 2, pp. 151-163. doi: 10.4064/fm-152-2-151-163
Cité par Sources :