Approximable dimension and acyclic resolutions
Fundamenta Mathematicae, Tome 152 (1997) no. 1, pp. 43-53.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We establish the following characterization of the approximable dimension of the metric space $X$ with respect to the commutative ring $R$ with identity: a-$\dim_R X \le n$ if and only if there exist a metric space $Z$ of dimension at most n and a proper $UV^{n-1}$-mapping $f:Z \to X$ such that $\check H^n(f^{-1}(x);R) = 0 $ for all $x \in X$. As an application we obtain some fundamental results about the approximable dimension of metric spaces with respect to a commutative ring with identity, such as the subset theorem and the existence of a universal space. We also show that approximable dimension (with arbitrary coefficient group) is preserved under refinable mappings.
DOI : 10.4064/fm-152-1-43-53
Keywords: approximable dimension, cohomological dimension, acyclic resolution, $UV^{n-1}$-resolution, universal space, refinable mapping

A. Koyama 1 ; R. B. Sher 1

1
@article{10_4064_fm_152_1_43_53,
     author = {A. Koyama and R. B. Sher},
     title = {Approximable dimension and acyclic resolutions},
     journal = {Fundamenta Mathematicae},
     pages = {43--53},
     publisher = {mathdoc},
     volume = {152},
     number = {1},
     year = {1997},
     doi = {10.4064/fm-152-1-43-53},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-152-1-43-53/}
}
TY  - JOUR
AU  - A. Koyama
AU  - R. B. Sher
TI  - Approximable dimension and acyclic resolutions
JO  - Fundamenta Mathematicae
PY  - 1997
SP  - 43
EP  - 53
VL  - 152
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-152-1-43-53/
DO  - 10.4064/fm-152-1-43-53
LA  - en
ID  - 10_4064_fm_152_1_43_53
ER  - 
%0 Journal Article
%A A. Koyama
%A R. B. Sher
%T Approximable dimension and acyclic resolutions
%J Fundamenta Mathematicae
%D 1997
%P 43-53
%V 152
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-152-1-43-53/
%R 10.4064/fm-152-1-43-53
%G en
%F 10_4064_fm_152_1_43_53
A. Koyama; R. B. Sher. Approximable dimension and acyclic resolutions. Fundamenta Mathematicae, Tome 152 (1997) no. 1, pp. 43-53. doi : 10.4064/fm-152-1-43-53. http://geodesic.mathdoc.fr/articles/10.4064/fm-152-1-43-53/

Cité par Sources :