Normal subspaces in products of two ordinals
Fundamenta Mathematicae, Tome 151 (1996) no. 3, pp. 279-297.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let λ be an ordinal number. It is shown that normality, collectionwise normality and shrinking are equivalent for all subspaces of $(λ+1)^2$.
DOI : 10.4064/fm-151-3-279-297
Keywords: (collectionwise) normal, shrinking, product space

Nobuyuki Kemoto 1 ; Tsugunori Nogura 1 ; Kerry D. Smith 1 ; Yukinobu Yajima 1

1
@article{10_4064_fm_151_3_279_297,
     author = {Nobuyuki Kemoto and Tsugunori  Nogura and Kerry D. Smith and Yukinobu  Yajima},
     title = {Normal subspaces in products of two ordinals},
     journal = {Fundamenta Mathematicae},
     pages = {279--297},
     publisher = {mathdoc},
     volume = {151},
     number = {3},
     year = {1996},
     doi = {10.4064/fm-151-3-279-297},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-151-3-279-297/}
}
TY  - JOUR
AU  - Nobuyuki Kemoto
AU  - Tsugunori  Nogura
AU  - Kerry D. Smith
AU  - Yukinobu  Yajima
TI  - Normal subspaces in products of two ordinals
JO  - Fundamenta Mathematicae
PY  - 1996
SP  - 279
EP  - 297
VL  - 151
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-151-3-279-297/
DO  - 10.4064/fm-151-3-279-297
LA  - en
ID  - 10_4064_fm_151_3_279_297
ER  - 
%0 Journal Article
%A Nobuyuki Kemoto
%A Tsugunori  Nogura
%A Kerry D. Smith
%A Yukinobu  Yajima
%T Normal subspaces in products of two ordinals
%J Fundamenta Mathematicae
%D 1996
%P 279-297
%V 151
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-151-3-279-297/
%R 10.4064/fm-151-3-279-297
%G en
%F 10_4064_fm_151_3_279_297
Nobuyuki Kemoto; Tsugunori  Nogura; Kerry D. Smith; Yukinobu  Yajima. Normal subspaces in products of two ordinals. Fundamenta Mathematicae, Tome 151 (1996) no. 3, pp. 279-297. doi : 10.4064/fm-151-3-279-297. http://geodesic.mathdoc.fr/articles/10.4064/fm-151-3-279-297/

Cité par Sources :