The geometry of laminations
Fundamenta Mathematicae, Tome 151 (1996) no. 3, pp. 195-207.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A lamination is a continuum which locally is the product of a Cantor set and an arc. We investigate the topological structure and embedding properties of laminations. We prove that a nondegenerate lamination cannot be tree-like and that a planar lamination has at least four complementary domains. Furthermore, a lamination in the plane can be obtained by a lakes of Wada construction.
DOI : 10.4064/fm-151-3-195-207
Keywords: attractor, lamination, hyperbolic geometry, tree-like continuum

R. J. Fokkink 1 ; L. G. Oversteegen 1

1
@article{10_4064_fm_151_3_195_207,
     author = {R. J. Fokkink and L. G. Oversteegen},
     title = {The geometry of laminations},
     journal = {Fundamenta Mathematicae},
     pages = {195--207},
     publisher = {mathdoc},
     volume = {151},
     number = {3},
     year = {1996},
     doi = {10.4064/fm-151-3-195-207},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-151-3-195-207/}
}
TY  - JOUR
AU  - R. J. Fokkink
AU  - L. G. Oversteegen
TI  - The geometry of laminations
JO  - Fundamenta Mathematicae
PY  - 1996
SP  - 195
EP  - 207
VL  - 151
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-151-3-195-207/
DO  - 10.4064/fm-151-3-195-207
LA  - en
ID  - 10_4064_fm_151_3_195_207
ER  - 
%0 Journal Article
%A R. J. Fokkink
%A L. G. Oversteegen
%T The geometry of laminations
%J Fundamenta Mathematicae
%D 1996
%P 195-207
%V 151
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-151-3-195-207/
%R 10.4064/fm-151-3-195-207
%G en
%F 10_4064_fm_151_3_195_207
R. J. Fokkink; L. G. Oversteegen. The geometry of laminations. Fundamenta Mathematicae, Tome 151 (1996) no. 3, pp. 195-207. doi : 10.4064/fm-151-3-195-207. http://geodesic.mathdoc.fr/articles/10.4064/fm-151-3-195-207/

Cité par Sources :