A complement to the theory of equivariant finiteness obstructions
Fundamenta Mathematicae, Tome 151 (1996) no. 2, pp. 97-106
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
It is known ([1], [2]) that a construction of equivariant finiteness obstructions leads to a family $w_α^H(X)$ of elements of the groups $K_0(ℤ [π_0(WH(X))_α^*])$. We prove that every family ${w_α^H}$ of elements of the groups $K_0(ℤ [π_0(WH(X))_α^*])$ can be realized as the family of equivariant finiteness obstructions $w^H_α(X)$ of an appropriate finitely dominated G-complex X. As an application of this result we show the natural equivalence of the geometric construction of equivariant finiteness obstruction ([5], [6]) and equivariant generalization of Wall's obstruction ([1], [2]).
@article{10_4064_fm_151_2_97_106,
author = {Pawe{\l} Andrzejewski},
title = {A complement to the theory of equivariant finiteness obstructions},
journal = {Fundamenta Mathematicae},
pages = {97--106},
year = {1996},
volume = {151},
number = {2},
doi = {10.4064/fm-151-2-97-106},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-151-2-97-106/}
}
TY - JOUR AU - Paweł Andrzejewski TI - A complement to the theory of equivariant finiteness obstructions JO - Fundamenta Mathematicae PY - 1996 SP - 97 EP - 106 VL - 151 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-151-2-97-106/ DO - 10.4064/fm-151-2-97-106 LA - en ID - 10_4064_fm_151_2_97_106 ER -
Paweł Andrzejewski. A complement to the theory of equivariant finiteness obstructions. Fundamenta Mathematicae, Tome 151 (1996) no. 2, pp. 97-106. doi: 10.4064/fm-151-2-97-106
Cité par Sources :