A complement to the theory of equivariant finiteness obstructions
Fundamenta Mathematicae, Tome 151 (1996) no. 2, pp. 97-106.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

It is known ([1], [2]) that a construction of equivariant finiteness obstructions leads to a family $w_α^H(X)$ of elements of the groups $K_0(ℤ [π_0(WH(X))_α^*])$. We prove that every family ${w_α^H}$ of elements of the groups $K_0(ℤ [π_0(WH(X))_α^*])$ can be realized as the family of equivariant finiteness obstructions $w^H_α(X)$ of an appropriate finitely dominated G-complex X. As an application of this result we show the natural equivalence of the geometric construction of equivariant finiteness obstruction ([5], [6]) and equivariant generalization of Wall's obstruction ([1], [2]).
DOI : 10.4064/fm-151-2-97-106

Paweł Andrzejewski 1

1
@article{10_4064_fm_151_2_97_106,
     author = {Pawe{\l}  Andrzejewski},
     title = {A complement to the theory of equivariant finiteness obstructions},
     journal = {Fundamenta Mathematicae},
     pages = {97--106},
     publisher = {mathdoc},
     volume = {151},
     number = {2},
     year = {1996},
     doi = {10.4064/fm-151-2-97-106},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-151-2-97-106/}
}
TY  - JOUR
AU  - Paweł  Andrzejewski
TI  - A complement to the theory of equivariant finiteness obstructions
JO  - Fundamenta Mathematicae
PY  - 1996
SP  - 97
EP  - 106
VL  - 151
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-151-2-97-106/
DO  - 10.4064/fm-151-2-97-106
LA  - en
ID  - 10_4064_fm_151_2_97_106
ER  - 
%0 Journal Article
%A Paweł  Andrzejewski
%T A complement to the theory of equivariant finiteness obstructions
%J Fundamenta Mathematicae
%D 1996
%P 97-106
%V 151
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-151-2-97-106/
%R 10.4064/fm-151-2-97-106
%G en
%F 10_4064_fm_151_2_97_106
Paweł  Andrzejewski. A complement to the theory of equivariant finiteness obstructions. Fundamenta Mathematicae, Tome 151 (1996) no. 2, pp. 97-106. doi : 10.4064/fm-151-2-97-106. http://geodesic.mathdoc.fr/articles/10.4064/fm-151-2-97-106/

Cité par Sources :