Monotone σ-complete groups with unbounded refinement
Fundamenta Mathematicae, Tome 151 (1996) no. 2, pp. 177-187
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The real line ℝ may be characterized as the unique non-atomic directed partially ordered abelian group which is monotone σ-complete (countable increasing bounded sequences have suprema), has the countable refinement property (countable sums $∑_ma_m = ∑_nb_n$ of positive (possibly infinite) elements have common refinements) and is linearly ordered. We prove here that the latter condition is not redundant, thus solving an old problem by A. Tarski, by proving that there are many spaces (in particular, of arbitrarily large cardinality) satisfying all the above listed axioms except linear ordering.
Keywords:
monotone σ-complete groups, partially ordered vector spaces, Archimedean condition
Affiliations des auteurs :
Friedrich Wehrung 1
@article{10_4064_fm_151_2_177_187,
author = {Friedrich Wehrung},
title = {Monotone \ensuremath{\sigma}-complete groups with unbounded refinement},
journal = {Fundamenta Mathematicae},
pages = {177--187},
publisher = {mathdoc},
volume = {151},
number = {2},
year = {1996},
doi = {10.4064/fm-151-2-177-187},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-151-2-177-187/}
}
TY - JOUR AU - Friedrich Wehrung TI - Monotone σ-complete groups with unbounded refinement JO - Fundamenta Mathematicae PY - 1996 SP - 177 EP - 187 VL - 151 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-151-2-177-187/ DO - 10.4064/fm-151-2-177-187 LA - en ID - 10_4064_fm_151_2_177_187 ER -
Friedrich Wehrung. Monotone σ-complete groups with unbounded refinement. Fundamenta Mathematicae, Tome 151 (1996) no. 2, pp. 177-187. doi: 10.4064/fm-151-2-177-187
Cité par Sources :