A note on strange nonchaotic attractors
Fundamenta Mathematicae, Tome 151 (1996) no. 2, pp. 139-148.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For a class of quasiperiodically forced time-discrete dynamical systems of two variables (θ,x) ∈ ${\mathbb T}^1 × ℝ_+$ with nonpositive Lyapunov exponents we prove the existence of an attractor Γ̅ with the following properties:  1. Γ̅ is the closure of the graph of a function x = ϕ(θ). It attracts Lebesgue-a.e. starting point in ${\mathbb T}^1 ×ℝ_+$. The set {θ:ϕ(θ) ≠ 0} is meager but has full 1-dimensional Lebesgue measure.   2. The omega-limit of Lebesgue-a.e point in ${\mathbb T}^1 × ℝ_+$ is $Γ̅$, but for a residual set of points in ${\mathbb T}^1 × ℝ_+$ the omega limit is the circle {(θ,x):x = 0} contained in Γ̅.   3. Γ̅ is the topological support of a BRS measure. The corresponding measure theoretical dynamical system is isomorphic to the forcing rotation.
DOI : 10.4064/fm-151-2-139-148

Gerhard Keller 1

1
@article{10_4064_fm_151_2_139_148,
     author = {Gerhard  Keller},
     title = {A note on strange nonchaotic attractors},
     journal = {Fundamenta Mathematicae},
     pages = {139--148},
     publisher = {mathdoc},
     volume = {151},
     number = {2},
     year = {1996},
     doi = {10.4064/fm-151-2-139-148},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-151-2-139-148/}
}
TY  - JOUR
AU  - Gerhard  Keller
TI  - A note on strange nonchaotic attractors
JO  - Fundamenta Mathematicae
PY  - 1996
SP  - 139
EP  - 148
VL  - 151
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-151-2-139-148/
DO  - 10.4064/fm-151-2-139-148
LA  - en
ID  - 10_4064_fm_151_2_139_148
ER  - 
%0 Journal Article
%A Gerhard  Keller
%T A note on strange nonchaotic attractors
%J Fundamenta Mathematicae
%D 1996
%P 139-148
%V 151
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-151-2-139-148/
%R 10.4064/fm-151-2-139-148
%G en
%F 10_4064_fm_151_2_139_148
Gerhard  Keller. A note on strange nonchaotic attractors. Fundamenta Mathematicae, Tome 151 (1996) no. 2, pp. 139-148. doi : 10.4064/fm-151-2-139-148. http://geodesic.mathdoc.fr/articles/10.4064/fm-151-2-139-148/

Cité par Sources :