Embedding partially ordered sets into $^ω ω$
Fundamenta Mathematicae, Tome 151 (1996) no. 1, pp. 53-95
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

We investigate some natural questions about the class of posets which can be embedded into 〈ω,≤*〉. Our main tool is a simple ccc forcing notion $H_E$ which generically embeds a given poset E into 〈ω,≤*〉 and does this in a "minimal" way (see Theorems 9.1, 10.1, 6.1 and 9.2).
@article{10_4064_fm_151_1_53_95,
     author = {Ilijas  Farah},
     title = {Embedding partially ordered sets into $^\ensuremath{\omega} \ensuremath{\omega}$},
     journal = {Fundamenta Mathematicae},
     pages = {53--95},
     year = {1996},
     volume = {151},
     number = {1},
     doi = {10.4064/fm-151-1-53-95},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-151-1-53-95/}
}
TY  - JOUR
AU  - Ilijas  Farah
TI  - Embedding partially ordered sets into $^ω ω$
JO  - Fundamenta Mathematicae
PY  - 1996
SP  - 53
EP  - 95
VL  - 151
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-151-1-53-95/
DO  - 10.4064/fm-151-1-53-95
LA  - en
ID  - 10_4064_fm_151_1_53_95
ER  - 
%0 Journal Article
%A Ilijas  Farah
%T Embedding partially ordered sets into $^ω ω$
%J Fundamenta Mathematicae
%D 1996
%P 53-95
%V 151
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-151-1-53-95/
%R 10.4064/fm-151-1-53-95
%G en
%F 10_4064_fm_151_1_53_95
Ilijas  Farah. Embedding partially ordered sets into $^ω ω$. Fundamenta Mathematicae, Tome 151 (1996) no. 1, pp. 53-95. doi: 10.4064/fm-151-1-53-95

Cité par Sources :