Embedding partially ordered sets into $^ω ω$
Fundamenta Mathematicae, Tome 151 (1996) no. 1, pp. 53-95
We investigate some natural questions about the class of posets which can be embedded into 〈ω,≤*〉. Our main tool is a simple ccc forcing notion $H_E$ which generically embeds a given poset E into 〈ω,≤*〉 and does this in a "minimal" way (see Theorems 9.1, 10.1, 6.1 and 9.2).
@article{10_4064_fm_151_1_53_95,
author = {Ilijas Farah},
title = {Embedding partially ordered sets into $^\ensuremath{\omega} \ensuremath{\omega}$},
journal = {Fundamenta Mathematicae},
pages = {53--95},
year = {1996},
volume = {151},
number = {1},
doi = {10.4064/fm-151-1-53-95},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-151-1-53-95/}
}
Ilijas Farah. Embedding partially ordered sets into $^ω ω$. Fundamenta Mathematicae, Tome 151 (1996) no. 1, pp. 53-95. doi: 10.4064/fm-151-1-53-95
Cité par Sources :