Bing maps and finite-dimensional maps
Fundamenta Mathematicae, Tome 151 (1996) no. 1, pp. 47-52.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let X and Y be compacta and let f:X → Y be a k-dimensional map. In [5] Pasynkov stated that if Y is finite-dimensional then there exists a map $g : X → \mathbb{I}^k$ such that dim (f × g) = 0. The problem that we deal with in this note is whether or not the restriction on the dimension of Y in the Pasynkov theorem can be omitted. This problem is still open.  Without assuming that Y is finite-dimensional Sternfeld [6] proved that there exists a map $g : X → \mathbb{I}^k$ such that dim (f × g) = 1. We improve this result of Sternfeld showing that there exists a map $g : X → \mathbb{I}^{k+1}$ such that dim (f × g) =0. The last result is generalized to maps f with weakly infinite-dimensional fibers.  Our proofs are based on so-called Bing maps. A compactum is said to be a Bing compactum if its compact connected subsets are all hereditarily indecomposable, and a map is said to be a Bing map if all its fibers are Bing compacta. Bing maps on finite-dimensional compacta were constructed by Brown [2]. We construct Bing maps for arbitrary compacta. Namely, we prove that for a compactum X the set of all Bing maps from X to $\mathbb{I}$ is a dense $G_δ$-subset of $C(X, \mathbb{I})$.
DOI : 10.4064/fm-151-1-47-52
Keywords: finite-dimensional maps, hereditarily indecomposable continua

Michael Levin 1

1
@article{10_4064_fm_151_1_47_52,
     author = {Michael  Levin},
     title = {Bing maps and finite-dimensional maps},
     journal = {Fundamenta Mathematicae},
     pages = {47--52},
     publisher = {mathdoc},
     volume = {151},
     number = {1},
     year = {1996},
     doi = {10.4064/fm-151-1-47-52},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-151-1-47-52/}
}
TY  - JOUR
AU  - Michael  Levin
TI  - Bing maps and finite-dimensional maps
JO  - Fundamenta Mathematicae
PY  - 1996
SP  - 47
EP  - 52
VL  - 151
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-151-1-47-52/
DO  - 10.4064/fm-151-1-47-52
LA  - en
ID  - 10_4064_fm_151_1_47_52
ER  - 
%0 Journal Article
%A Michael  Levin
%T Bing maps and finite-dimensional maps
%J Fundamenta Mathematicae
%D 1996
%P 47-52
%V 151
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-151-1-47-52/
%R 10.4064/fm-151-1-47-52
%G en
%F 10_4064_fm_151_1_47_52
Michael  Levin. Bing maps and finite-dimensional maps. Fundamenta Mathematicae, Tome 151 (1996) no. 1, pp. 47-52. doi : 10.4064/fm-151-1-47-52. http://geodesic.mathdoc.fr/articles/10.4064/fm-151-1-47-52/

Cité par Sources :