Deformations of bimodule problems
Fundamenta Mathematicae, Tome 150 (1996) no. 3, pp. 255-264.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that deformations of tame Krull-Schmidt bimodule problems with trivial differential are again tame. Here we understand deformations via the structure constants of the projective realizations which may be considered as elements of a suitable variety. We also present some applications to the representation theory of vector space categories which are a special case of the above bimodule problems.
DOI : 10.4064/fm-150-3-255-264
Keywords: bimodule problems, vector space categories, tame, wild, deformations, degenerations

Christof Geiß 1

1
@article{10_4064_fm_150_3_255_264,
     author = {Christof  Gei{\ss}},
     title = {Deformations of bimodule problems},
     journal = {Fundamenta Mathematicae},
     pages = {255--264},
     publisher = {mathdoc},
     volume = {150},
     number = {3},
     year = {1996},
     doi = {10.4064/fm-150-3-255-264},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-150-3-255-264/}
}
TY  - JOUR
AU  - Christof  Geiß
TI  - Deformations of bimodule problems
JO  - Fundamenta Mathematicae
PY  - 1996
SP  - 255
EP  - 264
VL  - 150
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-150-3-255-264/
DO  - 10.4064/fm-150-3-255-264
LA  - en
ID  - 10_4064_fm_150_3_255_264
ER  - 
%0 Journal Article
%A Christof  Geiß
%T Deformations of bimodule problems
%J Fundamenta Mathematicae
%D 1996
%P 255-264
%V 150
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-150-3-255-264/
%R 10.4064/fm-150-3-255-264
%G en
%F 10_4064_fm_150_3_255_264
Christof  Geiß. Deformations of bimodule problems. Fundamenta Mathematicae, Tome 150 (1996) no. 3, pp. 255-264. doi : 10.4064/fm-150-3-255-264. http://geodesic.mathdoc.fr/articles/10.4064/fm-150-3-255-264/

Cité par Sources :