On indecomposability and composants of chaotic continua
Fundamenta Mathematicae, Tome 150 (1996) no. 3, pp. 245-253.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A homeomorphism f:X → X of a compactum X with metric d is expansive if there is c > 0 such that if x,y ∈ X and x ≠ y, then there is an integer n ∈ ℤ such that $d(f^n(x),f^n(y)) > c$. A homeomorphism f: X → X is continuum-wise expansive if there is c > 0 such that if A is a nondegenerate subcontinuum of X, then there is an integer n ∈ ℤ such that $diami f^n(A) > c$. Clearly, every expansive homeomorphism is continuum-wise expansive, but the converse assertion is not true. In [6], we defined the notion of chaotic continua of homeomorphisms and proved the existence of chaotic continua of continuum-wise expansive homeomorphisms. Also, we studied indecomposability of chaotic continua. In this paper, we investigate further more properties of indecomposability of chaotic continua and their composants. In particular, we prove that if f:X → X is a continuum-wise expansive homeomorphism of a plane compactum $X ⊂ ℝ^2$ with dim X > 0, then there exists a σ-chaotic continuum Z (σ = s or u) of f such that Z is an indecomposable subcontinuum of X and for each z ∈ Z the composant c(z) of Z containing z coincides with the continuum-wise σ-stable set $V^σ(z;Z)$.
DOI : 10.4064/fm-150-3-245-253
Keywords: expansive homeomorphism, continuum-wise expansive homeomorphism, indecomposable, composant, chaotic continuum, plane compactum, stable and unstable sets

Hisao Kato 1

1
@article{10_4064_fm_150_3_245_253,
     author = {Hisao Kato},
     title = {On indecomposability and composants of chaotic continua},
     journal = {Fundamenta Mathematicae},
     pages = {245--253},
     publisher = {mathdoc},
     volume = {150},
     number = {3},
     year = {1996},
     doi = {10.4064/fm-150-3-245-253},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-150-3-245-253/}
}
TY  - JOUR
AU  - Hisao Kato
TI  - On indecomposability and composants of chaotic continua
JO  - Fundamenta Mathematicae
PY  - 1996
SP  - 245
EP  - 253
VL  - 150
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-150-3-245-253/
DO  - 10.4064/fm-150-3-245-253
LA  - en
ID  - 10_4064_fm_150_3_245_253
ER  - 
%0 Journal Article
%A Hisao Kato
%T On indecomposability and composants of chaotic continua
%J Fundamenta Mathematicae
%D 1996
%P 245-253
%V 150
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-150-3-245-253/
%R 10.4064/fm-150-3-245-253
%G en
%F 10_4064_fm_150_3_245_253
Hisao Kato. On indecomposability and composants of chaotic continua. Fundamenta Mathematicae, Tome 150 (1996) no. 3, pp. 245-253. doi : 10.4064/fm-150-3-245-253. http://geodesic.mathdoc.fr/articles/10.4064/fm-150-3-245-253/

Cité par Sources :