The Banach–Mazur game and σ-porosity
Fundamenta Mathematicae, Tome 150 (1996) no. 3, pp. 197-210.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

It is well known that the sets of the first category in a metric space can be described using the so-called Banach-Mazur game. We will show that if we change the rules of the Banach-Mazur game (by forcing the second player to choose large balls) then we can describe sets which can be covered by countably many closed uniformly porous sets. A characterization of σ-very porous sets and a sufficient condition for σ-porosity are also given in the terminology of games.
DOI : 10.4064/fm-150-3-197-210

Miroslav Zelený 1

1
@article{10_4064_fm_150_3_197_210,
     author = {Miroslav Zelen\'y},
     title = {The {Banach{\textendash}Mazur} game and \ensuremath{\sigma}-porosity},
     journal = {Fundamenta Mathematicae},
     pages = {197--210},
     publisher = {mathdoc},
     volume = {150},
     number = {3},
     year = {1996},
     doi = {10.4064/fm-150-3-197-210},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-150-3-197-210/}
}
TY  - JOUR
AU  - Miroslav Zelený
TI  - The Banach–Mazur game and σ-porosity
JO  - Fundamenta Mathematicae
PY  - 1996
SP  - 197
EP  - 210
VL  - 150
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-150-3-197-210/
DO  - 10.4064/fm-150-3-197-210
LA  - en
ID  - 10_4064_fm_150_3_197_210
ER  - 
%0 Journal Article
%A Miroslav Zelený
%T The Banach–Mazur game and σ-porosity
%J Fundamenta Mathematicae
%D 1996
%P 197-210
%V 150
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-150-3-197-210/
%R 10.4064/fm-150-3-197-210
%G en
%F 10_4064_fm_150_3_197_210
Miroslav Zelený. The Banach–Mazur game and σ-porosity. Fundamenta Mathematicae, Tome 150 (1996) no. 3, pp. 197-210. doi : 10.4064/fm-150-3-197-210. http://geodesic.mathdoc.fr/articles/10.4064/fm-150-3-197-210/

Cité par Sources :