ℳ-rank and meager groups
Fundamenta Mathematicae, Tome 150 (1996) no. 2, pp. 149-171.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Assume p* is a meager type in a superstable theory T. We investigate definability properties of p*-closure. We prove that if T has $2^{ℵ_0}$ countable models then the multiplicity rank ℳ of every type p is finite. We improve Saffe's conjecture.
DOI : 10.4064/fm-150-2-149-171

Ludomir Newelski 1

1
@article{10_4064_fm_150_2_149_171,
     author = {Ludomir Newelski},
     title = {\ensuremath{\mathscr{M}}-rank and meager groups},
     journal = {Fundamenta Mathematicae},
     pages = {149--171},
     publisher = {mathdoc},
     volume = {150},
     number = {2},
     year = {1996},
     doi = {10.4064/fm-150-2-149-171},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-150-2-149-171/}
}
TY  - JOUR
AU  - Ludomir Newelski
TI  - ℳ-rank and meager groups
JO  - Fundamenta Mathematicae
PY  - 1996
SP  - 149
EP  - 171
VL  - 150
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-150-2-149-171/
DO  - 10.4064/fm-150-2-149-171
LA  - en
ID  - 10_4064_fm_150_2_149_171
ER  - 
%0 Journal Article
%A Ludomir Newelski
%T ℳ-rank and meager groups
%J Fundamenta Mathematicae
%D 1996
%P 149-171
%V 150
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-150-2-149-171/
%R 10.4064/fm-150-2-149-171
%G en
%F 10_4064_fm_150_2_149_171
Ludomir Newelski. ℳ-rank and meager groups. Fundamenta Mathematicae, Tome 150 (1996) no. 2, pp. 149-171. doi : 10.4064/fm-150-2-149-171. http://geodesic.mathdoc.fr/articles/10.4064/fm-150-2-149-171/

Cité par Sources :