Locally constant functions
Fundamenta Mathematicae, Tome 150 (1996) no. 1, pp. 67-96.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let X be a compact Hausdorff space and M a metric space. $E_0(X,M)$ is the set of f ∈ C(X,M) such that there is a dense set of points x ∈ X with f constant on some neighborhood of x. We describe some general classes of X for which $E_0(X,M)$ is all of C(X,M). These include βℕ\ℕ, any nowhere separable LOTS, and any X such that forcing with the open subsets of X does not add reals. In the case where M is a Banach space, we discuss the properties of $E_0(X,M)$ as a normed linear space. We also build three first countable Eberlein compact spaces, F,G,H, with various $E_0$ properties. For all metric M, $E_0(F,M)$ contains only the constant functions, and $E_0(G,M) = C(G,M)$. If M is the Hilbert cube or any infinite-dimensional Banach space, then $E_0(H,M) ≠ C(H,M)$, but $E_0(H,M) = C(H,M)$ whenever $M ⊆ ℝ^n$ for some finite n.
DOI : 10.4064/fm-150-1-67-96

Joan Hart 1 ; Kenneth Kunen 1

1
@article{10_4064_fm_150_1_67_96,
     author = {Joan Hart and Kenneth  Kunen},
     title = {Locally constant functions},
     journal = {Fundamenta Mathematicae},
     pages = {67--96},
     publisher = {mathdoc},
     volume = {150},
     number = {1},
     year = {1996},
     doi = {10.4064/fm-150-1-67-96},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-150-1-67-96/}
}
TY  - JOUR
AU  - Joan Hart
AU  - Kenneth  Kunen
TI  - Locally constant functions
JO  - Fundamenta Mathematicae
PY  - 1996
SP  - 67
EP  - 96
VL  - 150
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-150-1-67-96/
DO  - 10.4064/fm-150-1-67-96
LA  - en
ID  - 10_4064_fm_150_1_67_96
ER  - 
%0 Journal Article
%A Joan Hart
%A Kenneth  Kunen
%T Locally constant functions
%J Fundamenta Mathematicae
%D 1996
%P 67-96
%V 150
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-150-1-67-96/
%R 10.4064/fm-150-1-67-96
%G en
%F 10_4064_fm_150_1_67_96
Joan Hart; Kenneth  Kunen. Locally constant functions. Fundamenta Mathematicae, Tome 150 (1996) no. 1, pp. 67-96. doi : 10.4064/fm-150-1-67-96. http://geodesic.mathdoc.fr/articles/10.4064/fm-150-1-67-96/

Cité par Sources :