Ultrametric spaces bi-Lipschitz embeddable in $ℝ^n$
Fundamenta Mathematicae, Tome 150 (1996) no. 1, pp. 25-42.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

It is proved that if an ultrametric space can be bi-Lipschitz embedded in $ℝ^n$, then its Assouad dimension is less than n. Together with a result of Luukkainen and Movahedi-Lankarani, where the converse was shown, this gives a characterization in terms of Assouad dimension of the ultrametric spaces which are bi-Lipschitz embeddable in $ℝ^n$.
DOI : 10.4064/fm-150-1-25-42

Kerkko Luosto 1

1
@article{10_4064_fm_150_1_25_42,
     author = {Kerkko Luosto},
     title = {Ultrametric spaces {bi-Lipschitz} embeddable in $\ensuremath{\mathbb{R}}^n$},
     journal = {Fundamenta Mathematicae},
     pages = {25--42},
     publisher = {mathdoc},
     volume = {150},
     number = {1},
     year = {1996},
     doi = {10.4064/fm-150-1-25-42},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-150-1-25-42/}
}
TY  - JOUR
AU  - Kerkko Luosto
TI  - Ultrametric spaces bi-Lipschitz embeddable in $ℝ^n$
JO  - Fundamenta Mathematicae
PY  - 1996
SP  - 25
EP  - 42
VL  - 150
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-150-1-25-42/
DO  - 10.4064/fm-150-1-25-42
LA  - en
ID  - 10_4064_fm_150_1_25_42
ER  - 
%0 Journal Article
%A Kerkko Luosto
%T Ultrametric spaces bi-Lipschitz embeddable in $ℝ^n$
%J Fundamenta Mathematicae
%D 1996
%P 25-42
%V 150
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-150-1-25-42/
%R 10.4064/fm-150-1-25-42
%G en
%F 10_4064_fm_150_1_25_42
Kerkko Luosto. Ultrametric spaces bi-Lipschitz embeddable in $ℝ^n$. Fundamenta Mathematicae, Tome 150 (1996) no. 1, pp. 25-42. doi : 10.4064/fm-150-1-25-42. http://geodesic.mathdoc.fr/articles/10.4064/fm-150-1-25-42/

Cité par Sources :