Hyperspaces of two-dimensional continua
Fundamenta Mathematicae, Tome 150 (1996) no. 1, pp. 17-24
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let X be a compact metric space and let C(X) denote the space of subcontinua of X with the Hausdorff metric. It is proved that every two-dimensional continuum X contains, for every n ≥ 1, a one-dimensional subcontinuum $T_n$ with $dim C (T_n) ≥ n$. This implies that X contains a compact one-dimensional subset T with dim C (T) = ∞.
Keywords:
hyperspaces, hereditarily indecomposable continua, one- and two-dimensional continua
Affiliations des auteurs :
Michael Levin 1 ; Yaki Sternfeld 1
@article{10_4064_fm_150_1_17_24,
author = {Michael Levin and Yaki Sternfeld},
title = {Hyperspaces of two-dimensional continua},
journal = {Fundamenta Mathematicae},
pages = {17--24},
publisher = {mathdoc},
volume = {150},
number = {1},
year = {1996},
doi = {10.4064/fm-150-1-17-24},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-150-1-17-24/}
}
TY - JOUR AU - Michael Levin AU - Yaki Sternfeld TI - Hyperspaces of two-dimensional continua JO - Fundamenta Mathematicae PY - 1996 SP - 17 EP - 24 VL - 150 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-150-1-17-24/ DO - 10.4064/fm-150-1-17-24 LA - en ID - 10_4064_fm_150_1_17_24 ER -
Michael Levin; Yaki Sternfeld. Hyperspaces of two-dimensional continua. Fundamenta Mathematicae, Tome 150 (1996) no. 1, pp. 17-24. doi: 10.4064/fm-150-1-17-24
Cité par Sources :