Hyperspaces of two-dimensional continua
Fundamenta Mathematicae, Tome 150 (1996) no. 1, pp. 17-24.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let X be a compact metric space and let C(X) denote the space of subcontinua of X with the Hausdorff metric. It is proved that every two-dimensional continuum X contains, for every n ≥ 1, a one-dimensional subcontinuum $T_n$ with $dim C (T_n) ≥ n$. This implies that X contains a compact one-dimensional subset T with dim C (T) = ∞.
DOI : 10.4064/fm-150-1-17-24
Keywords: hyperspaces, hereditarily indecomposable continua, one- and two-dimensional continua

Michael Levin 1 ; Yaki Sternfeld 1

1
@article{10_4064_fm_150_1_17_24,
     author = {Michael Levin and Yaki Sternfeld},
     title = {Hyperspaces of two-dimensional continua},
     journal = {Fundamenta Mathematicae},
     pages = {17--24},
     publisher = {mathdoc},
     volume = {150},
     number = {1},
     year = {1996},
     doi = {10.4064/fm-150-1-17-24},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-150-1-17-24/}
}
TY  - JOUR
AU  - Michael Levin
AU  - Yaki Sternfeld
TI  - Hyperspaces of two-dimensional continua
JO  - Fundamenta Mathematicae
PY  - 1996
SP  - 17
EP  - 24
VL  - 150
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-150-1-17-24/
DO  - 10.4064/fm-150-1-17-24
LA  - en
ID  - 10_4064_fm_150_1_17_24
ER  - 
%0 Journal Article
%A Michael Levin
%A Yaki Sternfeld
%T Hyperspaces of two-dimensional continua
%J Fundamenta Mathematicae
%D 1996
%P 17-24
%V 150
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-150-1-17-24/
%R 10.4064/fm-150-1-17-24
%G en
%F 10_4064_fm_150_1_17_24
Michael Levin; Yaki Sternfeld. Hyperspaces of two-dimensional continua. Fundamenta Mathematicae, Tome 150 (1996) no. 1, pp. 17-24. doi : 10.4064/fm-150-1-17-24. http://geodesic.mathdoc.fr/articles/10.4064/fm-150-1-17-24/

Cité par Sources :