Nonmetrizable topological dynamical characterization of central sets
Fundamenta Mathematicae, Tome 150 (1996) no. 1, pp. 1-9
Without the restriction of metrizability, topological dynamical systems $(X,〈 T_s〉_{s ∈ G})$ are defined and uniform recurrence and proximality are studied. Some well known results are generalized and some new results are obtained. In particular, a topological dynamical characterization of central sets in an arbitrary semigroup (G,+) is given and shown to be equivalent to the usual algebraic characterization.
Keywords:
topological dynamical system, enveloping semigroup, uniform recurrence, proximality, minimal idempotent, central subset
@article{10_4064_fm_150_1_1_9,
author = {Hong-Ting Shi and Hong-Wei Yang},
title = {Nonmetrizable topological dynamical characterization of central sets},
journal = {Fundamenta Mathematicae},
pages = {1--9},
year = {1996},
volume = {150},
number = {1},
doi = {10.4064/fm-150-1-1-9},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-150-1-1-9/}
}
TY - JOUR AU - Hong-Ting Shi AU - Hong-Wei Yang TI - Nonmetrizable topological dynamical characterization of central sets JO - Fundamenta Mathematicae PY - 1996 SP - 1 EP - 9 VL - 150 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-150-1-1-9/ DO - 10.4064/fm-150-1-1-9 LA - en ID - 10_4064_fm_150_1_1_9 ER -
Hong-Ting Shi; Hong-Wei Yang. Nonmetrizable topological dynamical characterization of central sets. Fundamenta Mathematicae, Tome 150 (1996) no. 1, pp. 1-9. doi: 10.4064/fm-150-1-1-9
Cité par Sources :