The Arkhangel'skiĭ–Tall problem under Martin’s Axiom
Fundamenta Mathematicae, Tome 149 (1996) no. 3, pp. 275-285.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that MA$_{σ-centered}(ω_1)$ implies that normal locally compact metacompact spaces are paracompact, and that MA($ω_1$) implies normal locally compact metalindelöf spaces are paracompact. The latter result answers a question of S. Watson. The first result implies that there is a model of set theory in which all normal locally compact metacompact spaces are paracompact, yet there is a normal locally compact metalindelöf space which is not paracompact.
DOI : 10.4064/fm-149-3-275-285

Gary Gruenhage 1 ; Piotr Koszmider 1

1
@article{10_4064_fm_149_3_275_285,
     author = {Gary  Gruenhage and Piotr Koszmider},
     title = {The {Arkhangel'ski\u{i}{\textendash}Tall} problem under {Martin{\textquoteright}s} {Axiom}},
     journal = {Fundamenta Mathematicae},
     pages = {275--285},
     publisher = {mathdoc},
     volume = {149},
     number = {3},
     year = {1996},
     doi = {10.4064/fm-149-3-275-285},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-149-3-275-285/}
}
TY  - JOUR
AU  - Gary  Gruenhage
AU  - Piotr Koszmider
TI  - The Arkhangel'skiĭ–Tall problem under Martin’s Axiom
JO  - Fundamenta Mathematicae
PY  - 1996
SP  - 275
EP  - 285
VL  - 149
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-149-3-275-285/
DO  - 10.4064/fm-149-3-275-285
LA  - en
ID  - 10_4064_fm_149_3_275_285
ER  - 
%0 Journal Article
%A Gary  Gruenhage
%A Piotr Koszmider
%T The Arkhangel'skiĭ–Tall problem under Martin’s Axiom
%J Fundamenta Mathematicae
%D 1996
%P 275-285
%V 149
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-149-3-275-285/
%R 10.4064/fm-149-3-275-285
%G en
%F 10_4064_fm_149_3_275_285
Gary  Gruenhage; Piotr Koszmider. The Arkhangel'skiĭ–Tall problem under Martin’s Axiom. Fundamenta Mathematicae, Tome 149 (1996) no. 3, pp. 275-285. doi : 10.4064/fm-149-3-275-285. http://geodesic.mathdoc.fr/articles/10.4064/fm-149-3-275-285/

Cité par Sources :