A dimension raising hereditary shape equivalence
Fundamenta Mathematicae, Tome 149 (1996) no. 3, pp. 265-274
We construct a hereditary shape equivalence that raises transfinite inductive dimension from ω to ω+1. This shows that ind and Ind do not admit a geometric characterisation in the spirit of Alexandroff's Essential Mapping Theorem, answering a question asked by R. Pol.
@article{10_4064_fm_149_3_265_274,
author = {Jan J. Dijkstra},
title = {A dimension raising hereditary shape equivalence},
journal = {Fundamenta Mathematicae},
pages = {265--274},
year = {1996},
volume = {149},
number = {3},
doi = {10.4064/fm-149-3-265-274},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-149-3-265-274/}
}
Jan J. Dijkstra. A dimension raising hereditary shape equivalence. Fundamenta Mathematicae, Tome 149 (1996) no. 3, pp. 265-274. doi: 10.4064/fm-149-3-265-274
Cité par Sources :