Iterations of rational functions: which hyperbolic components contain polynomials?
Fundamenta Mathematicae, Tome 149 (1996) no. 2, pp. 95-118
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $H^d$ be the set of all rational maps of degree d ≥ 2 on the Riemann sphere, expanding on their Julia set. We prove that if $f ∈ H^d$ and all, or all but one, critical points (or values) are in the basin of immediate attraction to an attracting fixed point then there exists a polynomial in the component H(f) of $H^d$ containing f. If all critical points are in the basin of immediate attraction to an attracting fixed point or a parabolic fixed point then f restricted to the Julia set is conjugate to the shift on the one-sided shift space of d symbols. We give exotic} examples of maps of an arbitrary degree d with a non-simply connected completely invariant basin of attraction and arbitrary number k ≥ 2 of critical points in the basin. For such a map $f ∈ H^d$ with k
@article{10_4064_fm_149_2_95_118,
author = {Feliks Przytycki},
title = {Iterations of rational functions: which hyperbolic components contain polynomials?},
journal = {Fundamenta Mathematicae},
pages = {95--118},
year = {1996},
volume = {149},
number = {2},
doi = {10.4064/fm-149-2-95-118},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-149-2-95-118/}
}
TY - JOUR AU - Feliks Przytycki TI - Iterations of rational functions: which hyperbolic components contain polynomials? JO - Fundamenta Mathematicae PY - 1996 SP - 95 EP - 118 VL - 149 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-149-2-95-118/ DO - 10.4064/fm-149-2-95-118 LA - en ID - 10_4064_fm_149_2_95_118 ER -
%0 Journal Article %A Feliks Przytycki %T Iterations of rational functions: which hyperbolic components contain polynomials? %J Fundamenta Mathematicae %D 1996 %P 95-118 %V 149 %N 2 %U http://geodesic.mathdoc.fr/articles/10.4064/fm-149-2-95-118/ %R 10.4064/fm-149-2-95-118 %G en %F 10_4064_fm_149_2_95_118
Feliks Przytycki. Iterations of rational functions: which hyperbolic components contain polynomials?. Fundamenta Mathematicae, Tome 149 (1996) no. 2, pp. 95-118. doi: 10.4064/fm-149-2-95-118
Cité par Sources :