Each nowhere dense nonvoid closed set in Rn is a σ-limit set
Fundamenta Mathematicae, Tome 149 (1996) no. 2, pp. 183-190
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We discuss main properties of the dynamics on minimal attraction centers (σ-limit sets) of single trajectories for continuous maps of a compact metric space into itself. We prove that each nowhere dense nonvoid closed set in $ℝ^n$, n ≥ 1, is a σ-limit set for some continuous map.
@article{10_4064_fm_149_2_183_190,
author = {Andrei G. Sivak},
title = {Each nowhere dense nonvoid closed set in {Rn} is a \ensuremath{\sigma}-limit set},
journal = {Fundamenta Mathematicae},
pages = {183--190},
publisher = {mathdoc},
volume = {149},
number = {2},
year = {1996},
doi = {10.4064/fm-149-2-183-190},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-149-2-183-190/}
}
TY - JOUR AU - Andrei G. Sivak TI - Each nowhere dense nonvoid closed set in Rn is a σ-limit set JO - Fundamenta Mathematicae PY - 1996 SP - 183 EP - 190 VL - 149 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-149-2-183-190/ DO - 10.4064/fm-149-2-183-190 LA - en ID - 10_4064_fm_149_2_183_190 ER -
Andrei G. Sivak. Each nowhere dense nonvoid closed set in Rn is a σ-limit set. Fundamenta Mathematicae, Tome 149 (1996) no. 2, pp. 183-190. doi: 10.4064/fm-149-2-183-190
Cité par Sources :