Each nowhere dense nonvoid closed set in Rn is a σ-limit set
Fundamenta Mathematicae, Tome 149 (1996) no. 2, pp. 183-190.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We discuss main properties of the dynamics on minimal attraction centers (σ-limit sets) of single trajectories for continuous maps of a compact metric space into itself. We prove that each nowhere dense nonvoid closed set in $ℝ^n$, n ≥ 1, is a σ-limit set for some continuous map.
DOI : 10.4064/fm-149-2-183-190

Andrei G. Sivak 1

1
@article{10_4064_fm_149_2_183_190,
     author = {Andrei G.  Sivak},
     title = {Each nowhere dense nonvoid closed set in {Rn} is a \ensuremath{\sigma}-limit set},
     journal = {Fundamenta Mathematicae},
     pages = {183--190},
     publisher = {mathdoc},
     volume = {149},
     number = {2},
     year = {1996},
     doi = {10.4064/fm-149-2-183-190},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-149-2-183-190/}
}
TY  - JOUR
AU  - Andrei G.  Sivak
TI  - Each nowhere dense nonvoid closed set in Rn is a σ-limit set
JO  - Fundamenta Mathematicae
PY  - 1996
SP  - 183
EP  - 190
VL  - 149
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-149-2-183-190/
DO  - 10.4064/fm-149-2-183-190
LA  - en
ID  - 10_4064_fm_149_2_183_190
ER  - 
%0 Journal Article
%A Andrei G.  Sivak
%T Each nowhere dense nonvoid closed set in Rn is a σ-limit set
%J Fundamenta Mathematicae
%D 1996
%P 183-190
%V 149
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-149-2-183-190/
%R 10.4064/fm-149-2-183-190
%G en
%F 10_4064_fm_149_2_183_190
Andrei G.  Sivak. Each nowhere dense nonvoid closed set in Rn is a σ-limit set. Fundamenta Mathematicae, Tome 149 (1996) no. 2, pp. 183-190. doi : 10.4064/fm-149-2-183-190. http://geodesic.mathdoc.fr/articles/10.4064/fm-149-2-183-190/

Cité par Sources :