The Arkhangel’skiĭ–Tall problem: a consistent counterexample
Fundamenta Mathematicae, Tome 149 (1996) no. 2, pp. 143-166.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We construct a consistent example of a normal locally compact metacompact space which is not paracompact, answering a question of A. V. Arkhangel'skiĭ and F. Tall. An interplay between a tower in P(ω)/Fin, an almost disjoint family in $[ω]^ω$, and a version of an (ω,1)-morass forms the core of the proof. A part of the poset which forces the counterexample can be considered a modification of a poset due to Judah and Shelah for obtaining a Q-set by a countable support iteration.
DOI : 10.4064/fm-149-2-143-166

Gary Gruenhage 1 ; Piotr Koszmider 1

1
@article{10_4064_fm_149_2_143_166,
     author = {Gary  Gruenhage and Piotr Koszmider},
     title = {The {Arkhangel{\textquoteright}ski\u{i}{\textendash}Tall} problem: a consistent counterexample},
     journal = {Fundamenta Mathematicae},
     pages = {143--166},
     publisher = {mathdoc},
     volume = {149},
     number = {2},
     year = {1996},
     doi = {10.4064/fm-149-2-143-166},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-149-2-143-166/}
}
TY  - JOUR
AU  - Gary  Gruenhage
AU  - Piotr Koszmider
TI  - The Arkhangel’skiĭ–Tall problem: a consistent counterexample
JO  - Fundamenta Mathematicae
PY  - 1996
SP  - 143
EP  - 166
VL  - 149
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-149-2-143-166/
DO  - 10.4064/fm-149-2-143-166
LA  - en
ID  - 10_4064_fm_149_2_143_166
ER  - 
%0 Journal Article
%A Gary  Gruenhage
%A Piotr Koszmider
%T The Arkhangel’skiĭ–Tall problem: a consistent counterexample
%J Fundamenta Mathematicae
%D 1996
%P 143-166
%V 149
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-149-2-143-166/
%R 10.4064/fm-149-2-143-166
%G en
%F 10_4064_fm_149_2_143_166
Gary  Gruenhage; Piotr Koszmider. The Arkhangel’skiĭ–Tall problem: a consistent counterexample. Fundamenta Mathematicae, Tome 149 (1996) no. 2, pp. 143-166. doi : 10.4064/fm-149-2-143-166. http://geodesic.mathdoc.fr/articles/10.4064/fm-149-2-143-166/

Cité par Sources :