The nonexistence of expansive homeomorphisms of chainable continua
Fundamenta Mathematicae, Tome 149 (1996) no. 2, pp. 119-126.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A homeomorphism f:X → X of a compactum X with metric d is expansive if there is c > 0 such that if x, y ∈ X and x ≠ y, then there is an integer n ∈ ℤ such that $d(f^n(x),f^n(y)) > c$. In this paper, we prove that if a homeomorphism f:X → X of a continuum X can be lifted to an onto map h:P → P of the pseudo-arc P, then f is not expansive. As a corollary, we prove that there are no expansive homeomorphisms on chainable continua. This is an affirmative answer to one of Williams' conjectures.
DOI : 10.4064/fm-149-2-119-126

Hisao Kato 1

1
@article{10_4064_fm_149_2_119_126,
     author = {Hisao  Kato},
     title = {The nonexistence of expansive homeomorphisms of chainable continua},
     journal = {Fundamenta Mathematicae},
     pages = {119--126},
     publisher = {mathdoc},
     volume = {149},
     number = {2},
     year = {1996},
     doi = {10.4064/fm-149-2-119-126},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-149-2-119-126/}
}
TY  - JOUR
AU  - Hisao  Kato
TI  - The nonexistence of expansive homeomorphisms of chainable continua
JO  - Fundamenta Mathematicae
PY  - 1996
SP  - 119
EP  - 126
VL  - 149
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-149-2-119-126/
DO  - 10.4064/fm-149-2-119-126
LA  - en
ID  - 10_4064_fm_149_2_119_126
ER  - 
%0 Journal Article
%A Hisao  Kato
%T The nonexistence of expansive homeomorphisms of chainable continua
%J Fundamenta Mathematicae
%D 1996
%P 119-126
%V 149
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-149-2-119-126/
%R 10.4064/fm-149-2-119-126
%G en
%F 10_4064_fm_149_2_119_126
Hisao  Kato. The nonexistence of expansive homeomorphisms of chainable continua. Fundamenta Mathematicae, Tome 149 (1996) no. 2, pp. 119-126. doi : 10.4064/fm-149-2-119-126. http://geodesic.mathdoc.fr/articles/10.4064/fm-149-2-119-126/

Cité par Sources :