The box-counting dimension for geometrically finite Kleinian groups
Fundamenta Mathematicae, Tome 149 (1996) no. 1, pp. 83-93
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We calculate the box-counting dimension of the limit set of a general geometrically finite Kleinian group. Using the 'global measure formula' for the Patterson measure and using an estimate on the horoball counting function we show that the Hausdorff dimension of the limit set is equal to both: the box-counting dimension and packing dimension of the limit set. Thus, by a result of Sullivan, we conclude that for a geometrically finite group these three different types of dimension coincide with the exponent of convergence of the group.
Affiliations des auteurs :
B. Stratmann 1 ; Mariusz Urbański 2
@article{10_4064_fm_149_1_83_93,
author = {B. Stratmann and Mariusz Urba\'nski},
title = {The box-counting dimension for geometrically finite {Kleinian} groups},
journal = {Fundamenta Mathematicae},
pages = {83--93},
year = {1996},
volume = {149},
number = {1},
doi = {10.4064/fm-149-1-83-93},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-149-1-83-93/}
}
TY - JOUR AU - B. Stratmann AU - Mariusz Urbański TI - The box-counting dimension for geometrically finite Kleinian groups JO - Fundamenta Mathematicae PY - 1996 SP - 83 EP - 93 VL - 149 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-149-1-83-93/ DO - 10.4064/fm-149-1-83-93 LA - en ID - 10_4064_fm_149_1_83_93 ER -
%0 Journal Article %A B. Stratmann %A Mariusz Urbański %T The box-counting dimension for geometrically finite Kleinian groups %J Fundamenta Mathematicae %D 1996 %P 83-93 %V 149 %N 1 %U http://geodesic.mathdoc.fr/articles/10.4064/fm-149-1-83-93/ %R 10.4064/fm-149-1-83-93 %G en %F 10_4064_fm_149_1_83_93
B. Stratmann; Mariusz Urbański. The box-counting dimension for geometrically finite Kleinian groups. Fundamenta Mathematicae, Tome 149 (1996) no. 1, pp. 83-93. doi: 10.4064/fm-149-1-83-93
Cité par Sources :