Algebraic properties of rings of continuous functions
Fundamenta Mathematicae, Tome 149 (1996) no. 1, pp. 55-66.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

This paper is devoted to the study of algebraic properties of rings of continuous functions. Our aim is to show that these rings, even if they are highly non-noetherian, have properties quite similar to the elementary properties of noetherian rings: we give going-up and going-down theorems, a characterization of z-ideals and of primary ideals having as radical a maximal ideal and a flatness criterion which is entirely analogous to the one for modules over principal ideal domains.
DOI : 10.4064/fm-149-1-55-66
Keywords: rings of continuous functions, going-up and going-down theorems, z-ideals, primary ideals, flat modules

M. A. Mulero 1

1
@article{10_4064_fm_149_1_55_66,
     author = {M. A. Mulero},
     title = {Algebraic properties of rings of continuous functions},
     journal = {Fundamenta Mathematicae},
     pages = {55--66},
     publisher = {mathdoc},
     volume = {149},
     number = {1},
     year = {1996},
     doi = {10.4064/fm-149-1-55-66},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-149-1-55-66/}
}
TY  - JOUR
AU  - M. A. Mulero
TI  - Algebraic properties of rings of continuous functions
JO  - Fundamenta Mathematicae
PY  - 1996
SP  - 55
EP  - 66
VL  - 149
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-149-1-55-66/
DO  - 10.4064/fm-149-1-55-66
LA  - en
ID  - 10_4064_fm_149_1_55_66
ER  - 
%0 Journal Article
%A M. A. Mulero
%T Algebraic properties of rings of continuous functions
%J Fundamenta Mathematicae
%D 1996
%P 55-66
%V 149
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-149-1-55-66/
%R 10.4064/fm-149-1-55-66
%G en
%F 10_4064_fm_149_1_55_66
M. A. Mulero. Algebraic properties of rings of continuous functions. Fundamenta Mathematicae, Tome 149 (1996) no. 1, pp. 55-66. doi : 10.4064/fm-149-1-55-66. http://geodesic.mathdoc.fr/articles/10.4064/fm-149-1-55-66/

Cité par Sources :