On the category of modules of second kind for Galois coverings
Fundamenta Mathematicae, Tome 149 (1996) no. 1, pp. 31-54
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let F: R → R/G be a Galois covering and $mod_1(R/G)$ (resp. $mod_2(R/G)$) be a full subcategory of the module category mod (R/G), consisting of all R/G-modules of first (resp. second) kind with respect to F. The structure of the categories $(mod (R/G))/[mod_1(R/G)]$ and $mod_2(R/G)$ is given in terms of representation categories of stabilizers of weakly-G-periodic modules for some class of coverings.
@article{10_4064_fm_149_1_31_54,
author = {Piotr Dowbor},
title = {On the category of modules of second kind for {Galois} coverings},
journal = {Fundamenta Mathematicae},
pages = {31--54},
year = {1996},
volume = {149},
number = {1},
doi = {10.4064/fm-149-1-31-54},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-149-1-31-54/}
}
TY - JOUR AU - Piotr Dowbor TI - On the category of modules of second kind for Galois coverings JO - Fundamenta Mathematicae PY - 1996 SP - 31 EP - 54 VL - 149 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-149-1-31-54/ DO - 10.4064/fm-149-1-31-54 LA - en ID - 10_4064_fm_149_1_31_54 ER -
Piotr Dowbor. On the category of modules of second kind for Galois coverings. Fundamenta Mathematicae, Tome 149 (1996) no. 1, pp. 31-54. doi: 10.4064/fm-149-1-31-54
Cité par Sources :