Subgroups of the Baer–Specker group with few endomorphisms but large dual
Fundamenta Mathematicae, Tome 149 (1996) no. 1, pp. 19-29
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Assuming the continuum hypothesis, we construct a pure subgroup G of the Baer-Specker group $ℤ^{ℵ_0}$ with the following properties. Every endomorphism of G differs from a scalar multiplication by an endomorphism of finite rank. Yet G has uncountably many homomorphisms to ℤ.
Affiliations des auteurs :
Andreas Blass 1 ; Rüdiger Göbel 1
@article{10_4064_fm_149_1_19_29,
author = {Andreas Blass and R\"udiger G\"obel},
title = {Subgroups of the {Baer{\textendash}Specker} group with few endomorphisms but large dual},
journal = {Fundamenta Mathematicae},
pages = {19--29},
year = {1996},
volume = {149},
number = {1},
doi = {10.4064/fm-149-1-19-29},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-149-1-19-29/}
}
TY - JOUR AU - Andreas Blass AU - Rüdiger Göbel TI - Subgroups of the Baer–Specker group with few endomorphisms but large dual JO - Fundamenta Mathematicae PY - 1996 SP - 19 EP - 29 VL - 149 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-149-1-19-29/ DO - 10.4064/fm-149-1-19-29 LA - en ID - 10_4064_fm_149_1_19_29 ER -
%0 Journal Article %A Andreas Blass %A Rüdiger Göbel %T Subgroups of the Baer–Specker group with few endomorphisms but large dual %J Fundamenta Mathematicae %D 1996 %P 19-29 %V 149 %N 1 %U http://geodesic.mathdoc.fr/articles/10.4064/fm-149-1-19-29/ %R 10.4064/fm-149-1-19-29 %G en %F 10_4064_fm_149_1_19_29
Andreas Blass; Rüdiger Göbel. Subgroups of the Baer–Specker group with few endomorphisms but large dual. Fundamenta Mathematicae, Tome 149 (1996) no. 1, pp. 19-29. doi: 10.4064/fm-149-1-19-29
Cité par Sources :