Subgroups of the Baer–Specker group with few endomorphisms but large dual
Fundamenta Mathematicae, Tome 149 (1996) no. 1, pp. 19-29.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Assuming the continuum hypothesis, we construct a pure subgroup G of the Baer-Specker group $ℤ^{ℵ_0}$ with the following properties. Every endomorphism of G differs from a scalar multiplication by an endomorphism of finite rank. Yet G has uncountably many homomorphisms to ℤ.
DOI : 10.4064/fm-149-1-19-29

Andreas Blass 1 ; Rüdiger Göbel 1

1
@article{10_4064_fm_149_1_19_29,
     author = {Andreas Blass and R\"udiger G\"obel},
     title = {Subgroups of the {Baer{\textendash}Specker} group with few endomorphisms but large dual},
     journal = {Fundamenta Mathematicae},
     pages = {19--29},
     publisher = {mathdoc},
     volume = {149},
     number = {1},
     year = {1996},
     doi = {10.4064/fm-149-1-19-29},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-149-1-19-29/}
}
TY  - JOUR
AU  - Andreas Blass
AU  - Rüdiger Göbel
TI  - Subgroups of the Baer–Specker group with few endomorphisms but large dual
JO  - Fundamenta Mathematicae
PY  - 1996
SP  - 19
EP  - 29
VL  - 149
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-149-1-19-29/
DO  - 10.4064/fm-149-1-19-29
LA  - en
ID  - 10_4064_fm_149_1_19_29
ER  - 
%0 Journal Article
%A Andreas Blass
%A Rüdiger Göbel
%T Subgroups of the Baer–Specker group with few endomorphisms but large dual
%J Fundamenta Mathematicae
%D 1996
%P 19-29
%V 149
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-149-1-19-29/
%R 10.4064/fm-149-1-19-29
%G en
%F 10_4064_fm_149_1_19_29
Andreas Blass; Rüdiger Göbel. Subgroups of the Baer–Specker group with few endomorphisms but large dual. Fundamenta Mathematicae, Tome 149 (1996) no. 1, pp. 19-29. doi : 10.4064/fm-149-1-19-29. http://geodesic.mathdoc.fr/articles/10.4064/fm-149-1-19-29/

Cité par Sources :