Hausdorff dimension and measures on Julia sets of some meromorphic maps
Fundamenta Mathematicae, Tome 147 (1995) no. 3, pp. 239-260.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study the Julia sets for some periodic meromorphic maps, namely the maps of the form $f(z) = h(\exp \frac{2πi}{T}z)$ where h is a rational function or, equivalently, the maps $˜f(z) = \exp (\frac{2πi}{h}(z))$. When the closure of the forward orbits of all critical and asymptotic values is disjoint from the Julia set, then it is hyperbolic and it is possible to construct the Gibbs states on $J(\widetilde f)$ for $-α \log |\widetilde f'|$. For $\widetilde α ={\rm HD}(J(\widetilde f))$ this state is equivalent to the $\widetilde α$-Hausdorff measure or to the $\widetilde α$-packing measure provided $\widetilde α$ is greater or smaller than 1. From this we obtain some lower bound for ${\rm HD}(J(f))$ and real-analyticity of ${\rm HD}(J(f))$ with respect to $f$. As an example the family $f_λ(z)=λ \operatorname{tan} z$ is studied. We estimate ${\rm HD}(J(f_λ))$ near $λ = 0$ and show it is a monotone function of real λ.
DOI : 10.4064/fm-147-3-239-260

Krzysztof Barański 1

1
@article{10_4064_fm_147_3_239_260,
     author = {Krzysztof Bara\'nski},
     title = {Hausdorff dimension and measures on {Julia} sets of some meromorphic maps},
     journal = {Fundamenta Mathematicae},
     pages = {239--260},
     publisher = {mathdoc},
     volume = {147},
     number = {3},
     year = {1995},
     doi = {10.4064/fm-147-3-239-260},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-147-3-239-260/}
}
TY  - JOUR
AU  - Krzysztof Barański
TI  - Hausdorff dimension and measures on Julia sets of some meromorphic maps
JO  - Fundamenta Mathematicae
PY  - 1995
SP  - 239
EP  - 260
VL  - 147
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-147-3-239-260/
DO  - 10.4064/fm-147-3-239-260
LA  - en
ID  - 10_4064_fm_147_3_239_260
ER  - 
%0 Journal Article
%A Krzysztof Barański
%T Hausdorff dimension and measures on Julia sets of some meromorphic maps
%J Fundamenta Mathematicae
%D 1995
%P 239-260
%V 147
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-147-3-239-260/
%R 10.4064/fm-147-3-239-260
%G en
%F 10_4064_fm_147_3_239_260
Krzysztof Barański. Hausdorff dimension and measures on Julia sets of some meromorphic maps. Fundamenta Mathematicae, Tome 147 (1995) no. 3, pp. 239-260. doi : 10.4064/fm-147-3-239-260. http://geodesic.mathdoc.fr/articles/10.4064/fm-147-3-239-260/

Cité par Sources :