Construction of non-subadditive measures and discretization of Borel measures
Fundamenta Mathematicae, Tome 147 (1995) no. 3, pp. 213-237
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The main result of the paper provides a method for construction of regular non-subadditive measures in compact Hausdorff spaces. This result is followed by several examples. In the last section it is shown that "discretization" of ordinary measures is possible in the following sense. Given a positive regular Borel measure λ, one may construct a sequence of non-subadditive measures $μ_n$, each of which only takes a finite set of values, and such that $μ_n$ converges to λ in the w*-topology.
@article{10_4064_fm_147_3_213_237,
author = {Johan Aarnes},
title = {Construction of non-subadditive measures and discretization of {Borel} measures},
journal = {Fundamenta Mathematicae},
pages = {213--237},
publisher = {mathdoc},
volume = {147},
number = {3},
year = {1995},
doi = {10.4064/fm-147-3-213-237},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-147-3-213-237/}
}
TY - JOUR AU - Johan Aarnes TI - Construction of non-subadditive measures and discretization of Borel measures JO - Fundamenta Mathematicae PY - 1995 SP - 213 EP - 237 VL - 147 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-147-3-213-237/ DO - 10.4064/fm-147-3-213-237 LA - en ID - 10_4064_fm_147_3_213_237 ER -
%0 Journal Article %A Johan Aarnes %T Construction of non-subadditive measures and discretization of Borel measures %J Fundamenta Mathematicae %D 1995 %P 213-237 %V 147 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm-147-3-213-237/ %R 10.4064/fm-147-3-213-237 %G en %F 10_4064_fm_147_3_213_237
Johan Aarnes. Construction of non-subadditive measures and discretization of Borel measures. Fundamenta Mathematicae, Tome 147 (1995) no. 3, pp. 213-237. doi: 10.4064/fm-147-3-213-237
Cité par Sources :