Construction of non-subadditive measures and discretization of Borel measures
Fundamenta Mathematicae, Tome 147 (1995) no. 3, pp. 213-237.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The main result of the paper provides a method for construction of regular non-subadditive measures in compact Hausdorff spaces. This result is followed by several examples. In the last section it is shown that "discretization" of ordinary measures is possible in the following sense. Given a positive regular Borel measure λ, one may construct a sequence of non-subadditive measures $μ_n$, each of which only takes a finite set of values, and such that $μ_n$ converges to λ in the w*-topology.
DOI : 10.4064/fm-147-3-213-237

Johan Aarnes 1

1
@article{10_4064_fm_147_3_213_237,
     author = {Johan Aarnes},
     title = {Construction of non-subadditive measures and discretization of {Borel} measures},
     journal = {Fundamenta Mathematicae},
     pages = {213--237},
     publisher = {mathdoc},
     volume = {147},
     number = {3},
     year = {1995},
     doi = {10.4064/fm-147-3-213-237},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-147-3-213-237/}
}
TY  - JOUR
AU  - Johan Aarnes
TI  - Construction of non-subadditive measures and discretization of Borel measures
JO  - Fundamenta Mathematicae
PY  - 1995
SP  - 213
EP  - 237
VL  - 147
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-147-3-213-237/
DO  - 10.4064/fm-147-3-213-237
LA  - en
ID  - 10_4064_fm_147_3_213_237
ER  - 
%0 Journal Article
%A Johan Aarnes
%T Construction of non-subadditive measures and discretization of Borel measures
%J Fundamenta Mathematicae
%D 1995
%P 213-237
%V 147
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-147-3-213-237/
%R 10.4064/fm-147-3-213-237
%G en
%F 10_4064_fm_147_3_213_237
Johan Aarnes. Construction of non-subadditive measures and discretization of Borel measures. Fundamenta Mathematicae, Tome 147 (1995) no. 3, pp. 213-237. doi : 10.4064/fm-147-3-213-237. http://geodesic.mathdoc.fr/articles/10.4064/fm-147-3-213-237/

Cité par Sources :