Characterization of knot complements in the n-sphere
Fundamenta Mathematicae, Tome 147 (1995) no. 2, pp. 189-196.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Knot complements in the n-sphere are characterized. A connected open subset W of $S^n$ is homeomorphic with the complement of a locally flat (n-2)-sphere in $S^n$, n ≥ 4, if and only if the first homology group of W is infinite cyclic, W has one end, and the homotopy groups of the end of W are isomorphic to those of $S^1$ in dimensions less than n/2. This result generalizes earlier theorems of Daverman, Liem, and Liem and Venema.
DOI : 10.4064/fm-147-2-189-196
Keywords: knot, n-sphere, complement, homotopy groups of end

Vo Thanh Liem 1 ; Gerard A. Venema  1

1
@article{10_4064_fm_147_2_189_196,
     author = {Vo Thanh Liem and Gerard A. Venema },
     title = {Characterization of knot complements in the n-sphere},
     journal = {Fundamenta Mathematicae},
     pages = {189--196},
     publisher = {mathdoc},
     volume = {147},
     number = {2},
     year = {1995},
     doi = {10.4064/fm-147-2-189-196},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-147-2-189-196/}
}
TY  - JOUR
AU  - Vo Thanh Liem
AU  - Gerard A. Venema 
TI  - Characterization of knot complements in the n-sphere
JO  - Fundamenta Mathematicae
PY  - 1995
SP  - 189
EP  - 196
VL  - 147
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-147-2-189-196/
DO  - 10.4064/fm-147-2-189-196
LA  - en
ID  - 10_4064_fm_147_2_189_196
ER  - 
%0 Journal Article
%A Vo Thanh Liem
%A Gerard A. Venema 
%T Characterization of knot complements in the n-sphere
%J Fundamenta Mathematicae
%D 1995
%P 189-196
%V 147
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-147-2-189-196/
%R 10.4064/fm-147-2-189-196
%G en
%F 10_4064_fm_147_2_189_196
Vo Thanh Liem; Gerard A. Venema . Characterization of knot complements in the n-sphere. Fundamenta Mathematicae, Tome 147 (1995) no. 2, pp. 189-196. doi : 10.4064/fm-147-2-189-196. http://geodesic.mathdoc.fr/articles/10.4064/fm-147-2-189-196/

Cité par Sources :