When is the category of flat modules abelian?
Fundamenta Mathematicae, Tome 147 (1995) no. 1, pp. 83-91
Let Fl(R) denote the category of flat right modules over an associative ring R. We find necessary and sufficient conditions for Fl(R) to be a Grothendieck category, in terms of properties of the ring R.
@article{10_4064_fm_147_1_83_91,
author = {J. Garc{\'\i}a and J. Mart{\'\i}nez Hern\'andez},
title = {When is the category of flat modules abelian?},
journal = {Fundamenta Mathematicae},
pages = {83--91},
year = {1995},
volume = {147},
number = {1},
doi = {10.4064/fm-147-1-83-91},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-147-1-83-91/}
}
TY - JOUR AU - J. García AU - J. Martínez Hernández TI - When is the category of flat modules abelian? JO - Fundamenta Mathematicae PY - 1995 SP - 83 EP - 91 VL - 147 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-147-1-83-91/ DO - 10.4064/fm-147-1-83-91 LA - en ID - 10_4064_fm_147_1_83_91 ER -
J. García; J. Martínez Hernández. When is the category of flat modules abelian?. Fundamenta Mathematicae, Tome 147 (1995) no. 1, pp. 83-91. doi: 10.4064/fm-147-1-83-91
Cité par Sources :