Sierpiński's hierarchy and locally Lipschitz functions
Fundamenta Mathematicae, Tome 147 (1995) no. 1, pp. 73-82.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let Z be an uncountable Polish space. It is a classical result that if I ⊆ ℝ is any interval (proper or not), f: I → ℝ and $α ω_1$ then f ○ g ∈ $B_α(Z)$ for every $g ∈ B_α(Z) ∩^ZI$ if and only if f is continuous on I, where $B_α(Z)$ stands for the αth class in Baire's classification of Borel measurable functions. We shall prove that for the classes $S_α(Z) (α > 0)$ in Sierpiński's classification of Borel measurable functions the analogous result holds where the condition that f is continuous is replaced by the condition that f is locally Lipschitz on I (thus it holds for the class of differences of semicontinuous functions, which is the class $S_1(Z)$). This theorem solves the problem raised by the work of Lindenbaum ([L] and [L, Corr.]) concerning the class of functions not leading outside $S_α(Z)$ by outer superpositions.
DOI : 10.4064/fm-147-1-73-82

Michał Morayne 1

1
@article{10_4064_fm_147_1_73_82,
     author = {Micha{\l} Morayne},
     title = {Sierpi\'nski's hierarchy and locally {Lipschitz} functions},
     journal = {Fundamenta Mathematicae},
     pages = {73--82},
     publisher = {mathdoc},
     volume = {147},
     number = {1},
     year = {1995},
     doi = {10.4064/fm-147-1-73-82},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-147-1-73-82/}
}
TY  - JOUR
AU  - Michał Morayne
TI  - Sierpiński's hierarchy and locally Lipschitz functions
JO  - Fundamenta Mathematicae
PY  - 1995
SP  - 73
EP  - 82
VL  - 147
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-147-1-73-82/
DO  - 10.4064/fm-147-1-73-82
LA  - en
ID  - 10_4064_fm_147_1_73_82
ER  - 
%0 Journal Article
%A Michał Morayne
%T Sierpiński's hierarchy and locally Lipschitz functions
%J Fundamenta Mathematicae
%D 1995
%P 73-82
%V 147
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-147-1-73-82/
%R 10.4064/fm-147-1-73-82
%G en
%F 10_4064_fm_147_1_73_82
Michał Morayne. Sierpiński's hierarchy and locally Lipschitz functions. Fundamenta Mathematicae, Tome 147 (1995) no. 1, pp. 73-82. doi : 10.4064/fm-147-1-73-82. http://geodesic.mathdoc.fr/articles/10.4064/fm-147-1-73-82/

Cité par Sources :