The minimum uniform compactification of a metric space
Fundamenta Mathematicae, Tome 147 (1995) no. 1, pp. 39-59.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

It is shown that associated with each metric space (X,d) there is a compactification $u_dX$ of X that can be characterized as the smallest compactification of X to which each bounded uniformly continuous real-valued continuous function with domain X can be extended. Other characterizations of $u_dX$ are presented, and a detailed study of the structure of $u_dX$ is undertaken. This culminates in a topological characterization of the outgrowth $u_dℝ^n ∖ ℝ^n$, where $(ℝ^n,d)$ is Euclidean n-space with its usual metric.
DOI : 10.4064/fm-147-1-39-59

R. Grant Woods 1

1
@article{10_4064_fm_147_1_39_59,
     author = {R. Grant Woods},
     title = {The minimum uniform compactification of a metric space},
     journal = {Fundamenta Mathematicae},
     pages = {39--59},
     publisher = {mathdoc},
     volume = {147},
     number = {1},
     year = {1995},
     doi = {10.4064/fm-147-1-39-59},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-147-1-39-59/}
}
TY  - JOUR
AU  - R. Grant Woods
TI  - The minimum uniform compactification of a metric space
JO  - Fundamenta Mathematicae
PY  - 1995
SP  - 39
EP  - 59
VL  - 147
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-147-1-39-59/
DO  - 10.4064/fm-147-1-39-59
LA  - en
ID  - 10_4064_fm_147_1_39_59
ER  - 
%0 Journal Article
%A R. Grant Woods
%T The minimum uniform compactification of a metric space
%J Fundamenta Mathematicae
%D 1995
%P 39-59
%V 147
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-147-1-39-59/
%R 10.4064/fm-147-1-39-59
%G en
%F 10_4064_fm_147_1_39_59
R. Grant Woods. The minimum uniform compactification of a metric space. Fundamenta Mathematicae, Tome 147 (1995) no. 1, pp. 39-59. doi : 10.4064/fm-147-1-39-59. http://geodesic.mathdoc.fr/articles/10.4064/fm-147-1-39-59/

Cité par Sources :