Products of completion regular measures
Fundamenta Mathematicae, Tome 147 (1995) no. 1, pp. 27-37.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We investigate the products of topological measure spaces, discussing conditions under which all open sets will be measurable for the simple completed product measure, and under which the product of completion regular measures will be completion regular. In passing, we describe a new class of spaces on which all completion regular Borel probability measures are τ-additive, and which have other interesting properties.
DOI : 10.4064/fm-147-1-27-37

D. H. Fremlin 1 ; S. Grekas 1

1
@article{10_4064_fm_147_1_27_37,
     author = {D. H. Fremlin and S. Grekas},
     title = {Products of completion regular measures},
     journal = {Fundamenta Mathematicae},
     pages = {27--37},
     publisher = {mathdoc},
     volume = {147},
     number = {1},
     year = {1995},
     doi = {10.4064/fm-147-1-27-37},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-147-1-27-37/}
}
TY  - JOUR
AU  - D. H. Fremlin
AU  - S. Grekas
TI  - Products of completion regular measures
JO  - Fundamenta Mathematicae
PY  - 1995
SP  - 27
EP  - 37
VL  - 147
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-147-1-27-37/
DO  - 10.4064/fm-147-1-27-37
LA  - en
ID  - 10_4064_fm_147_1_27_37
ER  - 
%0 Journal Article
%A D. H. Fremlin
%A S. Grekas
%T Products of completion regular measures
%J Fundamenta Mathematicae
%D 1995
%P 27-37
%V 147
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-147-1-27-37/
%R 10.4064/fm-147-1-27-37
%G en
%F 10_4064_fm_147_1_27_37
D. H. Fremlin; S. Grekas. Products of completion regular measures. Fundamenta Mathematicae, Tome 147 (1995) no. 1, pp. 27-37. doi : 10.4064/fm-147-1-27-37. http://geodesic.mathdoc.fr/articles/10.4064/fm-147-1-27-37/

Cité par Sources :