Quasivarieties of pseudocomplemented semilattices
Fundamenta Mathematicae, Tome 146 (1994) no. 3, pp. 295-312
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Two properties of the lattice of quasivarieties of pseudocomplemented semilattices are established, namely, in the quasivariety generated by the 3-element chain, there is a sublattice freely generated by ω elements and there are $2^ω$ quasivarieties.
Affiliations des auteurs :
M. E. Adams 1 ; W. Dziobiak 1 ; Matthew Gould 1 ; Jürg Schmid 1
@article{10_4064_fm_146_3_295_312,
author = {M. E. Adams and W. Dziobiak and Matthew Gould and J\"urg Schmid},
title = {Quasivarieties of pseudocomplemented semilattices},
journal = {Fundamenta Mathematicae},
pages = {295--312},
publisher = {mathdoc},
volume = {146},
number = {3},
year = {1994},
doi = {10.4064/fm-146-3-295-312},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-146-3-295-312/}
}
TY - JOUR AU - M. E. Adams AU - W. Dziobiak AU - Matthew Gould AU - Jürg Schmid TI - Quasivarieties of pseudocomplemented semilattices JO - Fundamenta Mathematicae PY - 1994 SP - 295 EP - 312 VL - 146 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-146-3-295-312/ DO - 10.4064/fm-146-3-295-312 LA - en ID - 10_4064_fm_146_3_295_312 ER -
%0 Journal Article %A M. E. Adams %A W. Dziobiak %A Matthew Gould %A Jürg Schmid %T Quasivarieties of pseudocomplemented semilattices %J Fundamenta Mathematicae %D 1994 %P 295-312 %V 146 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm-146-3-295-312/ %R 10.4064/fm-146-3-295-312 %G en %F 10_4064_fm_146_3_295_312
M. E. Adams; W. Dziobiak; Matthew Gould; Jürg Schmid. Quasivarieties of pseudocomplemented semilattices. Fundamenta Mathematicae, Tome 146 (1994) no. 3, pp. 295-312. doi: 10.4064/fm-146-3-295-312
Cité par Sources :