Quasivarieties of pseudocomplemented semilattices
Fundamenta Mathematicae, Tome 146 (1994) no. 3, pp. 295-312.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Two properties of the lattice of quasivarieties of pseudocomplemented semilattices are established, namely, in the quasivariety generated by the 3-element chain, there is a sublattice freely generated by ω elements and there are $2^ω$ quasivarieties.
DOI : 10.4064/fm-146-3-295-312

M. E. Adams 1 ; W. Dziobiak 1 ; Matthew Gould 1 ; Jürg Schmid 1

1
@article{10_4064_fm_146_3_295_312,
     author = {M. E. Adams and W. Dziobiak and Matthew Gould and J\"urg Schmid},
     title = {Quasivarieties of pseudocomplemented semilattices},
     journal = {Fundamenta Mathematicae},
     pages = {295--312},
     publisher = {mathdoc},
     volume = {146},
     number = {3},
     year = {1994},
     doi = {10.4064/fm-146-3-295-312},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-146-3-295-312/}
}
TY  - JOUR
AU  - M. E. Adams
AU  - W. Dziobiak
AU  - Matthew Gould
AU  - Jürg Schmid
TI  - Quasivarieties of pseudocomplemented semilattices
JO  - Fundamenta Mathematicae
PY  - 1994
SP  - 295
EP  - 312
VL  - 146
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-146-3-295-312/
DO  - 10.4064/fm-146-3-295-312
LA  - en
ID  - 10_4064_fm_146_3_295_312
ER  - 
%0 Journal Article
%A M. E. Adams
%A W. Dziobiak
%A Matthew Gould
%A Jürg Schmid
%T Quasivarieties of pseudocomplemented semilattices
%J Fundamenta Mathematicae
%D 1994
%P 295-312
%V 146
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-146-3-295-312/
%R 10.4064/fm-146-3-295-312
%G en
%F 10_4064_fm_146_3_295_312
M. E. Adams; W. Dziobiak; Matthew Gould; Jürg Schmid. Quasivarieties of pseudocomplemented semilattices. Fundamenta Mathematicae, Tome 146 (1994) no. 3, pp. 295-312. doi : 10.4064/fm-146-3-295-312. http://geodesic.mathdoc.fr/articles/10.4064/fm-146-3-295-312/

Cité par Sources :