Borel partitions of unity and lower Carathéodory multifunctions
Fundamenta Mathematicae, Tome 146 (1994) no. 3, pp. 239-249.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove the existence of Carathéodory selections and representations of a closed convex valued, lower Carathéodory multifunction from a set A in $A(ℰ ⊗ ℬ(X))$ into a separable Banach space Y, where ℰ is a sub-σ-field of the Borel σ-field ℬ(E) of a Polish space E, X is a Polish space and A is the Suslin operation. As applications we obtain random versions of results on extensions of continuous functions and fixed points of multifunctions. Such results are useful in the study of random differential equations and inclusions and in mathematical economics.   As a key tool we prove that if A is an analytic subset of E × X and if ${U_n : n ∈ w}$ is a sequence of Borel sets in A such that $A=∪_n U_n$ and the section $U_n(e)$ is open in A(e), e ∈ E, n ∈ w, then there exist Borel functions $p_n : A → [0,1]$, n ∈ w, such that for every e ∈ E, ${p_n(e,·) : n ∈ w}$ is a locally Lipschitz partition of unity subordinate to ${U_n(e) : n ∈ w}$.
DOI : 10.4064/fm-146-3-239-249
Keywords: Carathéodory functions and multifunctions, Carathéodory selections, fixed points

S. M. Srivastava 1

1
@article{10_4064_fm_146_3_239_249,
     author = {S. M. Srivastava},
     title = {Borel partitions of unity and lower {Carath\'eodory} multifunctions},
     journal = {Fundamenta Mathematicae},
     pages = {239--249},
     publisher = {mathdoc},
     volume = {146},
     number = {3},
     year = {1994},
     doi = {10.4064/fm-146-3-239-249},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-146-3-239-249/}
}
TY  - JOUR
AU  - S. M. Srivastava
TI  - Borel partitions of unity and lower Carathéodory multifunctions
JO  - Fundamenta Mathematicae
PY  - 1994
SP  - 239
EP  - 249
VL  - 146
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-146-3-239-249/
DO  - 10.4064/fm-146-3-239-249
LA  - en
ID  - 10_4064_fm_146_3_239_249
ER  - 
%0 Journal Article
%A S. M. Srivastava
%T Borel partitions of unity and lower Carathéodory multifunctions
%J Fundamenta Mathematicae
%D 1994
%P 239-249
%V 146
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-146-3-239-249/
%R 10.4064/fm-146-3-239-249
%G en
%F 10_4064_fm_146_3_239_249
S. M. Srivastava. Borel partitions of unity and lower Carathéodory multifunctions. Fundamenta Mathematicae, Tome 146 (1994) no. 3, pp. 239-249. doi : 10.4064/fm-146-3-239-249. http://geodesic.mathdoc.fr/articles/10.4064/fm-146-3-239-249/

Cité par Sources :