Borel partitions of unity and lower Carathéodory multifunctions
Fundamenta Mathematicae, Tome 146 (1994) no. 3, pp. 239-249
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We prove the existence of Carathéodory selections and representations of a closed convex valued, lower Carathéodory multifunction from a set A in $A(ℰ ⊗ ℬ(X))$ into a separable Banach space Y, where ℰ is a sub-σ-field of the Borel σ-field ℬ(E) of a Polish space E, X is a Polish space and A is the Suslin operation. As applications we obtain random versions of results on extensions of continuous functions and fixed points of multifunctions. Such results are useful in the study of random differential equations and inclusions and in mathematical economics. As a key tool we prove that if A is an analytic subset of E × X and if ${U_n : n ∈ w}$ is a sequence of Borel sets in A such that $A=∪_n U_n$ and the section $U_n(e)$ is open in A(e), e ∈ E, n ∈ w, then there exist Borel functions $p_n : A → [0,1]$, n ∈ w, such that for every e ∈ E, ${p_n(e,·) : n ∈ w}$ is a locally Lipschitz partition of unity subordinate to ${U_n(e) : n ∈ w}$.
Keywords:
Carathéodory functions and multifunctions, Carathéodory selections, fixed points
Affiliations des auteurs :
S. M. Srivastava 1
@article{10_4064_fm_146_3_239_249,
author = {S. M. Srivastava},
title = {Borel partitions of unity and lower {Carath\'eodory} multifunctions},
journal = {Fundamenta Mathematicae},
pages = {239--249},
year = {1994},
volume = {146},
number = {3},
doi = {10.4064/fm-146-3-239-249},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-146-3-239-249/}
}
TY - JOUR AU - S. M. Srivastava TI - Borel partitions of unity and lower Carathéodory multifunctions JO - Fundamenta Mathematicae PY - 1994 SP - 239 EP - 249 VL - 146 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-146-3-239-249/ DO - 10.4064/fm-146-3-239-249 LA - en ID - 10_4064_fm_146_3_239_249 ER -
S. M. Srivastava. Borel partitions of unity and lower Carathéodory multifunctions. Fundamenta Mathematicae, Tome 146 (1994) no. 3, pp. 239-249. doi: 10.4064/fm-146-3-239-249
Cité par Sources :