Rotation sets for subshifts of finite type
Fundamenta Mathematicae, Tome 146 (1994) no. 2, pp. 189-201.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For a dynamical system $(X,f)$ and a function $φ:X → ℝ^N$ the rotation set is defined. The case when $(X,f)$ is a transitive subshift of finite type and φ depends on the cylinders of length 2 is studied. Then the rotation set is a convex polyhedron. The rotation vectors of periodic points are dense in the rotation set. Every interior point of the rotation set is a rotation vector of an ergodic measure.
DOI : 10.4064/fm-146-2-189-201

Krystyna Ziemian 1

1
@article{10_4064_fm_146_2_189_201,
     author = {Krystyna Ziemian},
     title = {Rotation sets for subshifts of finite type},
     journal = {Fundamenta Mathematicae},
     pages = {189--201},
     publisher = {mathdoc},
     volume = {146},
     number = {2},
     year = {1994},
     doi = {10.4064/fm-146-2-189-201},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-146-2-189-201/}
}
TY  - JOUR
AU  - Krystyna Ziemian
TI  - Rotation sets for subshifts of finite type
JO  - Fundamenta Mathematicae
PY  - 1994
SP  - 189
EP  - 201
VL  - 146
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-146-2-189-201/
DO  - 10.4064/fm-146-2-189-201
LA  - en
ID  - 10_4064_fm_146_2_189_201
ER  - 
%0 Journal Article
%A Krystyna Ziemian
%T Rotation sets for subshifts of finite type
%J Fundamenta Mathematicae
%D 1994
%P 189-201
%V 146
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-146-2-189-201/
%R 10.4064/fm-146-2-189-201
%G en
%F 10_4064_fm_146_2_189_201
Krystyna Ziemian. Rotation sets for subshifts of finite type. Fundamenta Mathematicae, Tome 146 (1994) no. 2, pp. 189-201. doi : 10.4064/fm-146-2-189-201. http://geodesic.mathdoc.fr/articles/10.4064/fm-146-2-189-201/

Cité par Sources :