Rotation sets for subshifts of finite type
Fundamenta Mathematicae, Tome 146 (1994) no. 2, pp. 189-201
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For a dynamical system $(X,f)$ and a function $φ:X → ℝ^N$ the rotation set is defined. The case when $(X,f)$ is a transitive subshift of finite type and φ depends on the cylinders of length 2 is studied. Then the rotation set is a convex polyhedron. The rotation vectors of periodic points are dense in the rotation set. Every interior point of the rotation set is a rotation vector of an ergodic measure.
@article{10_4064_fm_146_2_189_201,
author = {Krystyna Ziemian},
title = {Rotation sets for subshifts of finite type},
journal = {Fundamenta Mathematicae},
pages = {189--201},
publisher = {mathdoc},
volume = {146},
number = {2},
year = {1994},
doi = {10.4064/fm-146-2-189-201},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-146-2-189-201/}
}
TY - JOUR AU - Krystyna Ziemian TI - Rotation sets for subshifts of finite type JO - Fundamenta Mathematicae PY - 1994 SP - 189 EP - 201 VL - 146 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-146-2-189-201/ DO - 10.4064/fm-146-2-189-201 LA - en ID - 10_4064_fm_146_2_189_201 ER -
Krystyna Ziemian. Rotation sets for subshifts of finite type. Fundamenta Mathematicae, Tome 146 (1994) no. 2, pp. 189-201. doi: 10.4064/fm-146-2-189-201
Cité par Sources :